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ABSTRACT

Music segmentation algorithms identify the structure
of a music recording by automatically dividing it into
sections and determining which sections repeat and when.
Since the desired granularity of the sections may vary
by application, multi-level segmentation produces several
levels of segmentation ordered by granularity from one
section (the whole song) up to N unique sections, and
has proven to be a challenging MIR task. In this work we
propose a multi-level segmentation method that leverages
deep audio embeddings learned via other tasks. Our
approach builds on an existing multi-level segmentation
algorithm, replacing manually engineered features with
deep embeddings learned through audio classification
problems where data are abundant. Additionally, we
propose a novel section fusion algorithm that leverages
the multi-level segmentation to consolidate short segments
at each level in a way that is consistent with the segmen-
tations at lower levels. Through a series of experiments
we show that replacing handcrafted features with deep
embeddings can lead to significant improvements in multi-
level music segmentation performance, and that section
fusion further improves the results by cleaning up spurious
short sections. We compare our approach to two strong
baselines and show that it yields state-of-the-art results.

1. INTRODUCTION

Audio-based music structure analysis, also known as
music segmentation, is one of the most widely studied and
challenging tasks in Music Information Retrieval [1]. The
goal of this task is to obtain a series of non-overlapping
sections (segments) defined by a set of temporal bound-
aries, and to identify and label which sections are
repetitions of each other. Automatic segmentation could
enable efficient intra-track navigation [2], assisted mu-
sic creation [3], and section-based music retrieval and
recommendation [4], to name some applications.

A key challenge in music segmentation is to capture the
different possible levels of temporal granularity with which
a song can be segmented. From an application perspective,
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a multi-level segmentation 1 that produces multiple seg-
mentations ranging from coarse (e.g., 1-3 unique sections
and their repetitions) to granular (e.g., 8-12) would allow
application designers and/or end users to choose the
level(s) of segmentation that best fits their needs. To
facilitate this, datasets such as SALAMI [5] and SPAM [6]
have been manually annotated with multiple segmentation
levels based on length (e.g., long-scale sections, short-term
motives) or functional role (e.g., “sax solo,” “outro”). Met-
rics to evaluate multi-level segmentation have also been
proposed recently [7,8] and adopted by the community [9].

Most segmentation methods yield just one level. An
early approach identified sharp differences in time series of
audio features related to timbre and harmony by running a
checkerboard kernel along the diagonal of a self-similarity
matrix [10]. More sophisticated handcrafted features were
later proposed, yielding superior boundary detection [11].
Currently, the best boundary detection is obtained with
deep learning models, such as a deep convolutional neural
network (CNN) [12] or deep metric learning which yields
an effective feature space for boundary detection [13].
Multi-level approaches appeared more recently, and just
a handful have been proposed to date. McFee and Ellis
apply spectral clustering to a self-similarity matrix ob-
tained via a simple combination of DSP features [14], an
approach later enhanced by Tralie and McFee by adding
harmonic embeddings from a convolutional-recurrent
neural network and using Similarity Network Fusion
(SNF) to combine features [9]. Supervised approaches
include ordinal linear discriminant analysis [15] and a
CNN that outputs two segmentation levels [16].

We propose an approach 2 that builds on the work of
McFee and Ellis [14]. We summarize our contributions as
follows: (1) we propose replacing or augmenting the hand-
crafted features with deep audio embeddings that can ro-
bustly capture various similarity and repetition cues; (2) we
introduce a multi-level section fusion algorithm that lever-
ages the different segmentation levels, consolidating short
sections to produce a cleaner and more consistent segmen-
tation across levels; (3) through a series of experiments
and qualitative analysis, we demonstrate the effectiveness
of each of our contributions. We compare our approach to
strong baselines and show that it produces state-of-the-art
results for multi-level music structure segmentation.

1 Also known as hierarchical structure segmentation, but since the lev-
els do not strictly form a hierarchy, we use multi-level segmentation.

2 Code: github.com/justinsalamon/musicseg_deepemb



2. LAPLACIAN STRUCTURAL DECOMPOSITION

We start with an overview of Laplacian Structural Decom-
position (LSD) [14], which forms the basis for our method.

A recurrence matrix captures the similarity between
feature frames of a track, and can expose song struc-
ture [11]. It is a binary, squared, symmetrical matrix R
such that Rij = 1 if frames i and j are similar–for a spe-
cific metric, e.g., cosine distance–and Rij = 0 otherwise.
McFee and Ellis [14] treat the recurrence matrix as an un-
weighted, undirected graph, where each frame is a vertex
and 1’s in the recurrence matrix represent edges. Then they
apply spectral clustering [17] (unrelated to audio spectro-
grams), yielding a per-frame cluster assignment. Sections
are derived by grouping frames by their cluster assignment.
Sections with the same cluster ID represent repetitions.

In the original approach, R is obtained by combin-
ing two recurrence matrices obtained from audio features:
Rloc computed from mel-frequency cepstral coefficients
(MFCC) to identify local similarity between consecutive
frames, and Rrep computed from Constant-Q transform
(CQT) features to capture repetition across the entire track.
The goal is to detect sudden sharp changes in timbre with
Rloc, while capturing long-term harmonic repetition with
Rrep. These matrices are combined via a weighted sum
controlled by a hyper-parameter µ ∈ [0, 1], which can be
set manually or automatically [14]:

R = µRrep + (1− µ)Rloc (1)

The number of unique sections produced by the seg-
mentation is equal to the number of clusters N used for
spectral clustering. By clustering with increasing N =
1...M we obtain a multi-level segmentation: the higher M
is, the finer the resulting segmentation [18]. The clustering
uses an eigenvalue decomposition, such that for a given M
the data are projected onto the first M eigenvectors (or-
dered by their eigenvalues) of the symmetrical normalized
Laplacian of R and then clustered. The key takeaway is
that the same eigenvectors are reused for increasing M
(each time adding one more), meaning cluster assignments
at different levels are related. This property is essential for
the multi-level section fusion algorithm we present later.

3. DEEP AUDIO EMBEDDINGS

We replace or augment the handcrafted features in LSD
with deep audio embeddings learned via other tasks, mak-
ing this a transfer learning approach. We propose to: (1)
replace the MFCC features with deep embeddings learned
via Few-Shot Learning (FSL) [19], and (2) augment the
CQT features with deep embeddings learned via a state-
of-the-art music auto-tagging model designed to capture
music similarity across genre, mood, tempo, and era [20].

3.1 Few-shot Learning Embeddings

The purpose of the MFCC features used in the LSD
method is to capture local (short-term) timbre similarity,
with the goal of identifying sharp transitions as potential

boundary locations. However, MFCC have been shown to
be sensitive to noise [21], and so we hypothesize that an au-
dio feature that captures short-term timbre similarity more
robustly could lead to better boundary detection.

To this end, we employ the Few-Shot Sound Event De-
tection model recently proposed by Wang et al. [22]. Few-
shot learning (FSL) is an area of machine learning which
aims to train models that are able, once trained, to robustly
recognize a new class given a handful of examples of the
new class at inference time [19]. Wang et al. showed that
Prototypical Networks [19], a metric-based approach orig-
inally proposed for FSL on images, can be successfully ap-
plied to the audio domain given the right adaptations. Im-
portantly, Prototypical Networks do not require fine-tuning
or retraining. Rather, they are used to embed audio such
that perceptually similar sounds are also close in the em-
bedding space, as shown by Wang et al. [22, 23]. As such,
these embeddings, which are computed from a 0.5 second
window, can be viewed as a general-purpose, short-term,
timbre similarity feature. Wang et al. focused on the task
of sound event detection (SED), training and evaluating
the model on few-shot word recognition via an annotated
speech corpus. We refer the reader to this study for further
details about the model architecture and training [22].

As this model was trained on hundreds of thousands
of audio samples, we hypothesize that the resulting audio
embedding will be more robust compared to MFCC for
capturing short-term timbre similarity. We replace MFCC
with these embeddings, henceforth FSL, to compute Rloc.
We use the model trained by Wang et. al, courtesy of the
authors. Even though the model was trained on speech
audio data, preliminary experiments indicated it captures
timbre similarity for music too–a form of transfer learning.

3.2 Music Similarity Embeddings for Repetition

In LSD the repetition recurrence matrix Rrep is obtained
using Constant-Q transform (CQT) features [24] computed
from the audio signal after applying Harmonic-Percussive
Source Separation (HPSS) [25] to enhance the harmonic
components of the audio signal. Still, not all songs ex-
hibit harmonic repetition, e.g., an EDM song may exhibit
repetition of timbre (presence/absence of a beat, a high-
or low-pass filter that is applied in specific sections, etc.).
Many Western popular music songs use the same harmonic
progression for both the verse and chorus, with only the in-
strumentation and lyrics indicating a section change.

We propose to use, in addition to CQT, deep audio
embeddings that can capture other complementary music
qualities that may be indicative of repetition, such as in-
strumentation, tempo, and mode. To achieve this, we lever-
age the deep music auto-tagger presented by Lee et al. [20].
In their work, the authors contrast classification and met-
ric learning for training a deep music embedding that can
be used for similarity-based music retrieval. Of the ap-
proaches compared, disentangled multi-task classification
yielded an embedding that gave the best music retrieval
results, in addition to producing state-of-the-art results for
music auto-tagging. Here, disentangled means that the em-



bedding space is divided into sub-spaces that capture dif-
ferent dimensions of music similarity. The full embedding
of size 256 is divided into four disjoint subspaces, each of
size 64, where each subspace captures similarity along one
musical dimension: genre, mood, tempo, and era. We refer
the reader to Lee et al. [20,26] for further details about the
model architecture and optimization.

We hypothesize that this embedding, which is obtained
from a 3-second context window and was trained on the
Million Song Dataset [27], captures musical qualities that
can be complementary to those captured by the CQT: genre
is often a reasonable proxy for instrumentation; mood can
be a proxy for tonality and dynamics; tempo is an impor-
tant low-level quality in itself; and era, in addition to be-
ing related to genre, can be indicative of mixing and mas-
tering effects. Combined, the full embedding, henceforce
referred to as DEEPSIM, may surface repetitions along di-
mensions that are not captured by the CQT.

3.3 Fusing Similarity Matrices

In Section 2 we explained that the LSD method uses two
matrices: Rloc (from MFCC) and Rrep (from CQT fea-
tures). Now, we replace MFCC with FSL features for com-
puting Rloc. For computing Rrep we do not replace the
CQT features but rather combine them with the DEEPSIM
embeddings, since they are potentially complementary. We
do this via another weighted sum controlled by a hyper-
parameter γ ∈ [0, 1], leading to the following equation:

R = µ
(
γRDEEPSIM + (1− γ)RCQT)+ (1− µ)RFSL (2)

All three matrices are normalized prior to being com-
bined to ensure their values are in the same [0, 1] range.
This simplistic approach to feature fusion may not be opti-
mal, and indeed more advanced fusion techniques such as
Similarity Network Fusion [9] have been proposed. How-
ever, this approach has the advantage of allowing us to eas-
ily and clearly study the relative importance of the features
we are proposing to use: µ controls the relative importance
of local versus repetition similarity, while γ controls the
relative importance of CQT versus DEEPSIM features for
repetition similarity. We set our initial parameterization to
µ = 0.5, γ = 0.5, meaning we give equal weight to local
similarity obtained via FSL features and repetition similar-
ity, which is given by the simple average of the RCQT and
RDEEPSIM matrices. Later on we will explore the impact of
varying these parameters on two different datasets to gain
insight about feature relevance for different data.

4. MULTI-LEVEL SECTION FUSION

In Section 2 we explained how segmentation is achieved
by clustering each frame of the audio signal. This assigns
each frame a cluster ID, and then consecutive frames with
the same cluster ID are grouped to form sections. This pro-
cess can sometimes result in a small number of consecutive
frames having a different cluster ID to those around them,
leading to very short sections. These often do not repre-
sent actual sections in the song, and even when they do,
they may not be helpful to the end user or application.

The LSD method attempts to alleviate this issue via
smoothing: it applies median filtering to RRep to enhance
diagonals in the matrix before it is combined with RLoc,
and also applies median smoothing to the vectors obtained
via spectral clustering. Even with this smoothing, we
found that our approach (and LSD) can still produce spuri-
ous short sections. Smoothing more aggressively would
deteriorate the temporal accuracy of the boundaries be-
tween sections, and is thus undesirable. What is more, it
is unlikely for there to be a single “best” minimal section
duration for all use cases. Rather, the appropriate lower
bound on section duration will depend on the application.

We address this challenge in a way that allows the user
to define their desired minimal section duration. Given the
desired minimal duration in seconds, we now need to re-
move sections whose duration is below this value, hence-
forth “short sections”, by fusing them with the previous
section, the next section, or both. But, how do we deter-
mine which section(s) to fuse with? We propose an algo-
rithm that leverages multi-level segmentation to solve this.

4.1 Multi-level Section Fusion Algorithm

Our method leverages two heuristics: (1) section IDs
should mostly be consistent with overlapping sections at
lower segmentation levels, since we are reusing the same
eigenvectors for clustering (cf. Section 2); (2) section
boundaries should be mostly consistent across segmenta-
tion levels, and thus a boundary that overlaps with bound-
aries at lower levels of the hierarchy is more likely to be a
real boundary compared to one that does not.

The algorithm works as follows: say we need to fuse a
short section at level n. If the section is the first or last of
the song, we merge it to the next or previous section re-
spectively, as that is our only option. If the section is in the
middle of the song and both the previous and next sections
have the same ID, we merge all three together. These three
simple scenarios are depicted in Figure 1a. Otherwise, we
need to determine whether to merge the short section with
the previous or the next section at level n. So, we look one
level down in the hierarchy (n − 1) and find the section
that overlaps the most with our short section. If the ID of
the overlapping section at level n − 1 matches the ID of
either the previous or next sections at level n, we merge
the short section with the matching section (Figure 1b). If
the overlapping ID at level n− 1 does not match the ID of
neither the previous nor the next section at level n, we go
down to level n − 2 and try again (Figure 1c), and so on
until we find an overlapping section whose ID matches the
ID of either the previous or next section at level n.

If we reach the bottom level and still do not find a
match, we turn to our second multi-level cue: the bound-
aries (Figure 1d). Our short section at level n has two
boundaries, let’s call them “start” and “end.” For each of
the two we count how many boundaries they overlap with
at all lower segmentation levels, where we consider bound-
aries at different levels to overlap if they are within one
second of each other. Whichever of the two (start or end)
overlaps with the most boundaries at lower levels is more
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Figure 1: Multi-level section fusion algorithm: in all plots the short orange section needs to be fused. The number to the
left of each segmentation represents its level, with the number in orange indicating the level being cleaned: (A) three simple
fusion scenarios, (B) fusion via multi-level segmentation IDs: level n−1 gives us the answer, (C) same as (B) but this time
level n − 2 gives us the answer, (D) fusion via multi-level segmentation boundaries: the start boundary is consistent with
boundaries at levels n− 1 and n− 2, whereas the end boundary is not consistent with any boundaries at lower levels.

likely to be a real boundary, so we keep that boundary and
remove the other by fusing the short section to the adjacent
section separated by the “losing” boundary.

We repeat the entire process until there are no short sec-
tions left at level n. We iterate over the sections in a dou-
ble loop: the outer loop iterates over section IDs, from the
highest to the lowest. The section ID corresponds to the
eigenvector to which the section was clustered. By iterat-
ing in this way, we are more likely to keep sections with
lower IDs, which in turn are more likely to appear at lower
levels of the hierarchy. Within each section ID, our inner
loop iterates over the sections from shortest to longest. We
have found that this approach leads to more coherent sec-
tion fusion across the entire hierarchy.

5. EXPERIMENTAL DESIGN

5.1 Datasets

We experiment with two datasets: Harmonix [28] and
SALAMI [5], which are the largest datasets published to
date with structural segmentation annotations. They are
notably different in terms of audio content and annotations.

The Harmonix set contains 912 tracks of Western pop-
ular music that have been manually annotated with func-
tional sections (“intro,” “chorus,” “solo,” etc.). As such,
the annotations are not multi-level (i.e., they are “flat”)
and represent a single segmentation level with one anno-
tator per track. This dataset was compiled by the video
game company Harmonix with the goal of incorporating
music segmentation into some of its music games (e.g.,
Rock Band, Guitar Hero). This makes it highly relevant
for evaluating algorithms that will be applied in real-world
applications focusing on Western music.

The SALAMI set is comprised of 1,355 tracks spanning
a wide range of musical genres including classical, jazz,
non-Western music, live performances, etc. Each track is
manually annotated with three levels: (1) functional seg-
ments representing sections such as “guitar solo,” “verse,”
etc.; (2) larger-scale segments representing longer struc-
tural sequences, annotated with upper-case letters, e.g.,
A, B, C’; (3) small-scale segments capturing shorter time
scales in the song that may include melody lines or motifs,
annotated with lower-case letters, e.g., a, b’, c. To be com-

parable to previous work [9], we evaluate against the large-
(2) and small-scale (3) annotations, limiting our test set to
tracks that have two or more annotations (884 tracks). The
remainder (471) are used for hyper-parameter tuning.

5.2 Metrics

The L-Measure (L-M) is the preferred metric for evalu-
ating multi-level segmentations [7]. It treats music seg-
mentation as a similarity ranking problem, capturing both
boundary alignment (otherwise evaluated as a binary clas-
sification problem) and segment labeling (otherwise eval-
uated as a clustering problem). To compute L-M, we di-
vide the reference annotation into time points (frames), and
compare each point t against all other time points. If t is
closer to point u than point v when considering all seg-
mentation levels, we represent it as a triplet (t, u, v). We
repeat the same process for the algorithm’s estimate seg-
mentation. We then define the L-Precision (L-P) as the
fraction of estimate triplets that match reference triplets,
the L-Recall (L-R) as the fraction of reference triplets that
match estimate triplets, and L-M as their harmonic mean.

Our method and the baselines we compare it against
produce much deeper segmentations than the two levels
annotated in SALAMI or the single level annotated in Har-
monix, meaning the L-Precision may not be sufficiently re-
liable [7,9]. Conversely, the L-Recall, which captures how
well the structure defined in the reference is retrieved in the
estimation is, in this context, a more trustworthy metric,
and so we focus on it in our study. Still, for completeness
we report all three L metrics (L-P, L-R, L-M).

We also report the standard metrics used to evaluate
flat music segmentation: Hit Rate for boundary retrieval at
0.5 and 3 second tolerance windows, HR0.5 and HR3, and
the Pairwise Frame Clustering (PFC) [29] and Normalized
Conditional Entropies (NCE) [30] for segment labeling.
Since our application scenario assumes the preferred seg-
mentation level will be preset by the application designer
or set by the end user based on their needs, we simulate this
scenario in our evaluation by computing these metrics for
each track using the segmentation level that maximizes the
metrics. For conciseness, we only report the aggregated
harmonic mean for each of the flat metrics.



Deep Embs. Sec. Fusion L-P L-R L-M
No No 36.70 65.77 46.82
No Yes 38.07 66.68 47.92
Yes No 40.91 76.56 53.01
Yes Yes 43.50 76.47 55.01

Table 1: Ablation results on the Harmonix dataset.

5.3 Baselines

We compare our approach against two baselines: the orig-
inal LSD method [14], and its improved variant that adds
deep harmonic embeddings and uses Similarity Network
Fusion (SNF) to combine the recurrence matrices [9].
While the latter baseline also leverages deep embeddings,
they are only designed to capture harmony, unlike our
multiple deep embeddings which capture a variety of mu-
sical properties. We use the LSD implementation from
MSAF [6] and the SNF implementation released by the au-
thors. 3 LSD and our method use beat-aligned features, for
which we use the beat tracker by Korzeniowski et al. [31]
implemented in the madmom package [32], as it has been
been shown to yield better segmentation results [28] com-
pared to the default beat tracker in Librosa [33]. SNF does
not rely on beat tracking.

5.4 Ablations

To demonstrate the effectiveness of our contributions, we
perform a systematic ablation compared to LSD: we fix
µ = 0.5 for LSD and µ = γ = 0.5 for our approach,
and then compare LSD, LSD + section fusion, our method
(LSD + deep embeddings) without section fusion, and fi-
nally our full method (LSD + deep embeddings + section
fusion). For section fusion we set the minimum section
duration to 8 seconds (=4 bars at 120 bpm) as a reasonable
lower bound. In a real world scenario this value could be
chosen by an end user or preset by the application designer.

6. RESULTS

6.1 Ablations

In Table 1 we present the results of the ablations described
above on the Harmonix dataset. We see that our deep
embeddings and section fusion independently improve the
baseline. Noteworthy is the dramatic increase in L-Recall
due to our proposed deep embeddings. Combining the
deep embeddings with section fusion improves L-Precision
and thus the overall L-M. Though omitted from Table 1 for
conciseness, we also confirmed that just replacing MFCC
with FSL (without DEEPSIM) improves over the baseline,
strengthening our hypothesis from Section 3.1.

6.2 Feature Importance

To understand the relative importance of the features used
in our approach, we run a grid search over µ and γ, focus-
ing on L-Recall (cf. Sec. 5.2). Remember that µ controls
the ratio of local similarity (FSL embeddings) to repetition,

3 https://github.com/ctralie/GraphDitty
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Figure 2: Grid search for µ and γ, red square is best.

while γ controls the relative contribution of the DEEPSIM
embeddings versus the CQT features to repetition.

We present the results in Figure 2 for Harmonix and
SALAMI, with the L-Recall maxima marked by a square.
First, we note that results always worsen when µ = 0 or
1, illustrating the importance of combining both local sim-
ilarity and repetition matrices. While less pronounced, the
same is true of γ, showing that both datasets benefit from
combining DEEPSIM and CQT features for repetition.

For Harmonix, performance is maximized when µ =
0.1, γ = 0.9: most weight goes to local repetition via FSL,
with most of the remainder going to DEEPSIM features for
repetition. On the other hand, for SALAMI performance
is maximized when µ = γ = 0.1, i.e., most of the weight
goes to FSL with the remainder going to CQT features.

The difference in optimal parameter values per dataset
warrants discussion. A small µ in both cases highlights the
importance of local similarity information (FSL), regard-
less of music genre. On the other hand, we see the DEEP-
SIM embeddings are preferred when segmenting Western
popular music (Harmonix), while CQT features are fa-
vored for SALAMI which is more diverse. One possible
explanation is that DEEPSIM was trained on a subset of
MSD that leans more heavily toward Western popular mu-
sic compared to SALAMI [34]. Still, it is always beneficial
to use a combination of both features.

6.3 Multi-level and Flat Results

We compare our approach against two strong baselines
representing the state-of-the-art in multi-level music struc-
ture segmentation [9, 14]. We compute the baselines us-
ing the same setup reported by their authors. LSD sets µ
automatically per-track in a data-driven fashion. For our
approach, Deep Embeddings with section Fusion (DEF),
we report results for three parameter configurations: (1)
µ = γ = 0.5, (2) optimal values obtained via grid search
on SALAMI-train (µS , γS), (3) optimal values obtained
via grid search on Harmonix (µH , γH) 4 .

The full multi-level segmentation results are presented
in Table 2. For SALAMI, we see that the parameter values
obtained by optimizing DEF over SALAMI-train general-
ize well to the test set, beating all other methods in terms
of multi-level segmentation (L-P, L-R, L-M) and setting a
new state of the art. Turning to Harmonix, we see that DEF
outperforms the baseline for all three parameter configura-
tions, setting a new state of the art for this dataset too. Most

4 These may be artificially inflated due to the lack of train/test splits
for the Harmonix dataset.



SALAMI Harmonix
Method L-P L-R L-M L-P L-R L-M
LSD [7] 41.89 63.60 49.77 39.05 69.33 49.63
SNF [9] 43.08 66.82 51.65 36.38 67.47 47.01

DEF0.5, 0.5 42.43 64.51 50.38 43.50 76.47 55.01
DEFµS , γS 43.46 67.30 52.02 42.63 75.43 54.06
DEFµH , γH 41.64 66.06 50.38 43.23 81.03 56.04

Table 2: Multi-level segmentation results.

SALAMI Harmonix
Method HR0.5 HR3 PFC NCE HR0.5 HR3 PFC NCE
LSD [7] 31.99 47.46 56.13 59.00 40.69 56.50 61.21 57.43
SNF [9] 29.17 45.59 56.73 59.98 26.57 51.42 57.38 54.86

DEF0.5, 0.5 33.78 55.65 59.44 62.16 45.74 68.84 70.11 66.48
DEFµS , γS 32.07 53.91 59.99 62.39 43.18 67.34 69.34 65.44
DEFµH , γH 31.79 56.35 58.56 61.48 41.61 71.17 71.49 67.59

Table 3: Flat segmentation results.

sections in the “lowercase” level of SALAMI are shorter
than 8 s which, given our section fusion, may explain why
the improvement is moderate compared to Harmonix. Fur-
thermore, SALAMI contains various tracks with limited
inter-annotator agreement [6], making it harder for an al-
gorithm to match the reference annotations.

Finally, we report the flat results in Table 3 (SALAMI
is evaluated against the “uppercase” level). Note that these
results mimic the behavior of a user choosing their desired
segmentation level, as described in Section 5.2. Similar
to the multi-label results, vanilla DEF also outperforms
the baselines on all flat metrics in both datasets, including
HR0.5 which is the strictest metric for boundary retrieval.

6.4 Qualitative Analysis

To gain further insight into how our approach compares to
the LSD baseline, we examine the multi-level segmenta-
tions they produce for a particular track in the Harmonix
dataset: track 199, “The Number of the Beast” by Iron
Maiden (we encourage the reader to listen to this track to
better follow this section). The multi-level segmentations
are shown in Figure 3 (we use vanilla DEF0.5, 0.5) with the
reference boundaries overlaid as vertical magenta lines and
the reference section labels printed at the top of each plot.

It is apparent that the baseline method produces many
more noisy segments (i.e., too short, not pertinent) com-
pared to our approach. Particularly relevant is the “break-
down” segment, where there are multiple changes in terms
of instrumentation: the drums stop suddenly, the rhythm
and bass guitars change riffs drastically, and all this occurs
between two different guitar solos (“solo” and “solo2”).
The baseline method detects these short changes starting
at level 3, without being able to detect the whole “break-
down” as a single whole section. This also prevents it from
recognizing other important sections at levels 3 and 4 such
as “inst,” which is where the drums kick in along with a
loud and long scream, or the “verse” and “chorus” sections,
since the new unique sections introduced at these levels are
“cannibalized” by the changes in the “breakdown.”

In contrast, our method detects the breakdown as a
segment starting from level 6, labeling it similarly to the
“bridge,” which makes musical sense given that both parts
are instrumental and quite different to all others parts. The
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Figure 3: Segmentation of Harmonix track 199: LSD (top)
and DEF0.5, 0.5 (bottom). Ground truth in vertical lines.

absence of noisy short segments in our approach can be at-
tributed, in all likelihood, to our proposed section fusion
algorithm. Our method successfully captures the drum
entrance in level 3, identifying three highly differentiated
long segments: spoken word intro (blue), music with min-
imal drums (orange), and music with full drums (yellow).
Successfully capturing these key changes in timbre can be
attributed to our introduction of the proposed deep em-
beddings. Overall, it is apparent in this example that our
method obtains notably cleaner sections that better align to
the reference annotations thanks to both the deep embed-
dings and the multi-level section fusion algorithm.

7. CONCLUSION

In this work we introduced a multi-level segmentation
method that leverages deep audio embeddings learned via
other tasks. Building on an existing multi-level segmenta-
tion algorithm based on spectral clustering, we replaced
MFCC features with deep embeddings trained via Few-
Shot Learning for computing local timbre similarity. We
also augmented the CQT features used to identify sec-
tion repetition with deep embeddings from a state-of-the-
art music auto-tagging model that captures similarity along
different music dimensions. Next, we introduced a novel
section fusion algorithm that leverages the multi-level seg-
mentation to consolidate short segments. Through a series
of experiments we showed that our two key contributions–
replacing the handcrafted features with our proposed deep
embeddings and applying multi-level section fusion–lead
to significant improvements in multi-level music segmen-
tation, outperforming two strong baselines and yielding
state-of-the-art results. Finally, we complemented our
quantitative results with a qualitative analysis to gain fur-
ther insight into how our proposed enhancements improve
segmentation performance. Future work includes evaluat-
ing a broader range of deep embeddings with our segmen-
tation approach such as OpenL3 [35] and VGGish [36],
exploring advanced feature fusion approaches such as SNF
[9], and investigating automated strategies for determining
the optimal minimum section duration for section fusion.
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