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Abstract—Melody extraction algorithms aim to produce a
sequence of frequency values corresponding to the pitch of the
dominant melody from a musical recording. Over the past decade
melody extraction has emerged as an active research topic,
comprising a large variety of proposed algorithms spanning a
wide range of techniques. This article provides an overview of
these techniques, the applications for which melody extraction is
useful, and the challenges that remain. We start with a discussion
of ‘melody’ from both musical and signal processing perspectives,
and provide a case study which interprets the output of a melody
extraction algorithm for specific excerpts. We then provide
a comprehensive comparative analysis of melody extraction
algorithms based on the results of an international evaluation
campaign. We discuss issues of algorithm design, evaluation and
applications which build upon melody extraction. Finally, we
discuss some of the remaining challenges in melody extraction
research in terms of algorithmic performance, development, and
evaluation methodology.

Index Terms—Melody Extraction, Music Information Re-
trieval, Evaluation, Review, Audio Content Processing.

I. INTRODUCTION

MUSIC was the first mass-market industry to be com-
pletely restructured by digital technology, starting with

the compact disc, and leading to today’s situation where
typical consumers may have access to thousands of tracks
stored locally on their smartphone or music player, and mil-
lions of tracks instantly available through cloud-based music
services. This vast quantity of music demands novel methods
of description, indexing, searching, and interaction. Recent
advances in audio processing have led to technologies that
can help users interact with music by directly analyzing the
musical content of audio files. The extraction of melody
from polyphonic music signals is such a technology and has
received substantial attention from the audio signal processing
and music information retrieval (MIR) research communities.
Known as “Melody Extraction”, “Audio Melody Extraction”,
“Predominant Melody Extraction”, “Predominant Melody Es-
timation” or “Predominant Fundamental Frequency Estima-
tion”, the task involves automatically obtaining a sequence
of frequency values representing the pitch of the dominant
melodic line from recorded music audio signals (Figure 1).
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Fig. 1. Melody extraction: obtaining a sequence of frequency values
representing the pitch of the melody from the audio signal of polyphonic
music.

Music transcription, i.e., converting an audio signal into a
description of all the notes being played, is a task that can
usually be achieved by a trained student of music, and has
long been a topic of computational research. It has, however,
proven to be very difficult due to the complex and deliberately-
overlapped spectral structure of musical harmonies. In one of
the earliest works in the field, Masataka Goto pointed out that
many interesting music tasks, such as melody-based retrieval,
or melody line suppression for karaoke, could be achieved
with a much more limited transcription that recovered only
a single melody line as the “strongest” pitch in the likely
melody range at any time [1]. This idea was picked up by
Emilia Gómez, Beesuan Ong, and Sebastian Streich, who
put together a melody extraction task as part of the Audio
Description Contests associated with the 2004 International
Conference on Music Information Retrieval (ISMIR), which
was organized by the Music Technology Group at Pompeu
Fabra University, Barcelona [2]. This activity was followed
by the Music Information Retrieval Evaluation eXchange
(MIREX) evaluation campaign for music information retrieval
technologies [3], and has in subsequent years resulted in a
series of well-organized international evaluations with broad
participation, described in section III.

To frame the technical task of melody extraction, we should
start by examining the musicological concept of “melody”,
which ultimately relies on the judgement of human listeners
[2], and will therefore tend to vary across application contexts
(e.g. symbolic melodic similarity [4] or music transcription
[5]). Centuries of musicological study [6] have resulted in
no clear consensus regarding the definition of “melody”, but
faced with the need for a common interpretation, the MIR
community has opted for simplified, pragmatic definitions
that result in a task amenable to signal processing. One
popular definition [2] holds that “the melody is the single
(monophonic) pitch sequence that a listener might reproduce if
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asked to whistle or hum a piece of polyphonic music, and that
a listener would recognize as being the essence of that music
when heard in comparison”. This definition is still open to
a considerable degree of subjectivity, since different listeners
might hum different parts after listening to the same song
(e.g., lead vocals versus guitar solo). In practice, research
has focused on what we term “single source predominant
fundamental frequency estimation”. That is, the melody is
constrained to belong to a single sound source throughout
the piece being analyzed, where this sound source is consid-
ered to be the most predominant instrument or voice in the
mixture. While the subjective element can not be completely
eliminated even in this definition (for instance, how do we
define predominant?), the problem is avoided in practice by
working with musical material that contains a clear lead singer
or instrument. Thus, our modified task definition becomes:
“single source predominant fundamental frequency estimation
from musical content with a lead voice or instrument”. While
this definition is too limited to encompass everything one
might consider as melody, its solution would nonetheless lead
to extremely powerful technologies. Note that we have used
the term fundamental frequency (henceforth f0) to refer to
the physical property most closely related to the perceptual
property of pitch [7]. Still, the terms pitch and f0 are often
used interchangeably in the melody extraction literature, and
for the sake of readability we shall do the same here. The
final musical term we must define is “polyphonic music”.
Although musicology draws distinctions between monophonic,
homophonic, heterophonic and polyphonic musical textures, in
this paper “polyphonic” is simply used to refer to any type of
music in which two or more notes can sound simultaneously,
be it on different instruments (e.g., voice, guitar and bass) or
a single instrument capable of playing more than one note at
a time (e.g., the piano).

With these definitions of melody and polyphony, it becomes
easier to define melody extraction as a signal processing
challenge: Given a recording of polyphonic music, we want
to automatically estimate the sequence of f0 values that
corresponds to the pitch of the lead voice or instrument.
Furthermore, we must estimate the time intervals when this
voice is not present in the mixture (known as the “voicing
detection” problem). For a human listener, this task might
seem almost trivial – many of us can sing the melodies
of our favorite songs even without any musical training.
Those with musical training can even transcribe a melody
into musical notation. However, when we try to automate this
task, it turns out to be highly challenging. The complexity
of the task is mainly due to two factors: first, a polyphonic
music signal is composed of the superposition of the sound
waves produced by all instruments in the recording, and
much of the time these instruments play simultaneously. When
considering the spectral content of the signal, the frequency
components of different sources superimpose making it very
hard to attribute specific energy levels in specific frequency
bands to the notes of individual instruments. This is further
complicated by mixing and mastering techniques which can
add reverberation (thus blurring note onsets and offsets and
increasing the overlap of sound sources) or apply dynamic

range compression (thus reducing the difference between soft
and loud sources, increasing interference). Second, even after
we obtain a pitch-based representation of the audio signal,
we still need to determine which pitch values belong to the
predominant melody and which are merely accompaniment.
The challenge is illustrated in Figure 2 which displays the
spectrograms of several polyphonic excerpts (top pane) and the
target melody sequence (bottom pane in red) together with the
estimate (in blue) of a melody extraction algorithm (cf. Section
II).

As we discuss in Section VI, melody extraction has many
potential applications, including query-by-humming (search-
ing for a song by singing or humming part of its melody) and
cover song identification (detecting whether two recordings are
different renditions of the same musical piece) [8], [9], genre
classification (automatically sorting your music collection
based on genre) [10], music de-soloing for the automatic gen-
eration of karaoke accompaniment [11] and singer characteri-
zation [12]. It also has a wide range of applications in compu-
tational musicology and ethnomusicology, such as music tran-
scription [13], intonation analysis [14] and automatic melodic
motif and pattern analysis [15]. Determining the melody
of a song could also be used as an intermediate step towards
the derivation of other semantic labels from music signals.
Finally, melody extraction also has a variety of uses outside
the realm of research, such as electroacoustic composition and
music education. Melody extraction technologies are begin-
ning to be incorporated into professional music production
tools such as Adobe Audition1 and Melodyne2.

The remainder of this article is structured as follows: in
Section II we start with a case study where we examine the
output of a state-of-the-art algorithm for different excerpts
to reveal the challenges and pitfalls of the task. Then, in
Section III, we provide a broad overview of melody extraction
algorithms from 2005 to date. In Section IV we describe
the evaluation measures and test collections commonly used
for melody extraction, and in Section V we discuss the
accuracy obtained by melody extraction algorithms based on
these collections. Section VI describes some of the software
and research applications that have been developed based
on melody extraction technologies, and in Section VII we
discuss some of the challenges that still need to be addressed
to improve melody extraction algorithms. Finally we provide
some concluding remarks in Section VIII.

II. CASE STUDY

To better understand the challenges of melody extraction
and the types of errors afflicting melody extraction algorithms,
we start with a closer look at the actual melody extraction
results for some musical excerpts. For conciseness, we limit
ourselves to one state-of-the-art algorithm [16], but the types
of errors we observe (and the challenges they represent) are
common to all methods.

Figure 2 shows the output of the algorithm for three excerpts
in the genres of (a) vocal jazz, (b) pop music and (c) opera.

1http://www.adobe.com/products/audition.html
2http://www.celemony.com/cms/
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Fig. 2. Case study examples. Top pane: log-frequency spectrogram. Bottom pane: extracted melody [16] (blue) and ground truth (red). Excerpt: (a) vocal
jazz, (b) pop and (c) opera.

Each plot has two panes: in the top pane, we display a
log-frequency spectrogram, showing the complex pattern of
harmonics associated with these polyphonic musical signals.
The bottom pane displays the final melody line estimated
by the algorithm (blue) overlaid on top of the ground truth
annotation (red).

Before we can interpret different types of errors in the
plots, it is useful to know what a correct extraction looks like,
provided in plot (a). We see that the blue (estimated) and red
(ground truth) melody sequences overlap almost perfectly, and
there are practically no frames where only one sequence is
present. The perfect overlap means the pitch estimation of the
algorithm is correct. The fact that there are no frames where
only one sequence is present indicates we have not made any
voicing detection mistakes – a red sequence on its own would
mean we wrongly estimated the frame as unvoiced when the
melody is actually present. A blue sequence on its own would
mean a case of voicing false alarm, that is, a frame where we
mistakenly included some other pitched source in the melody
when the melody is in fact not present in that frame. In plot
(a) we see that the algorithm correctly estimates the pitch of
the lead singer while excluding the notes of the piano chord
played between seconds 3 and 4.

In plot (b) we provide an example which contains both pitch
errors (seconds 4 to 7) and voicing errors (seconds 7 to 9). The
excerpt is taken from a pop song whose arrangement includes
a lead singer, guitar accompaniment and backing vocals. Here,
the source of both types of errors are the backing vocals, who
sing a stable pitch in the same range as the melodic line of
the lead singer. As a result, the algorithm mistakenly tracks
the backing vocals, resulting in a wrong pitch estimate (up to
second 7) followed by a voicing false alarm, since the backing
vocals continue after the lead singer has paused.

Finally, in plot (c) we provide an example where the
algorithm makes octave errors. In this excerpt, taken from an
opera aria sung by a male singer, the pitch class of the melody
is correctly estimated but in the wrong octave (one octave
above the actual pitch of the singer). Here, the octave errors
most likely stem from the actual singing technique used by the
singer. Unlike pop or jazz singers, classical singers are trained
to produce a highly resonant sound (allowing them to be

heard over the orchestra). In the low frequencies this resonance
results in the second harmonic often having a larger amplitude
than the fundamental frequency, and in the high frequencies
the appearance (especially in male singers) of a clear formant
around 3 kHz (the “singer’s formant”) [17]. Combined, these
phenomena can cause the algorithm to give more weight to
2f0 than to f0 (f0 being the correct fundamental frequency),
as seen in the spectrogram in the top pane of plot (c) between
seconds 10 and 12. The increased salience at double the true f0
combined with the relatively low pitch range of the melody
(algorithms often bias the tracking against low frequencies)
results in the algorithm tracking the melody one octave above
the correct pitch, thus producing the observed octave errors.

III. ALGORITHM OVERVIEW: 2005 TO DATE

Melody extraction is strongly linked to pitch (fundamental
frequency) estimation, which has a long research tradition.
Early approaches for pitch estimation in music dealt with the
estimation of the f0 of monophonic music recordings, and
were adopted from the speech processing literature [32]. Since
then, various approaches specifically tailored for f0 estimation
in monophonic music signals have been proposed [33]. More
recently, algorithms have also been proposed for estimating the
f0 of multiple concurrent instruments in polyphonic recordings
(multi-pitch estimation). For a detailed review the reader is
referred to [34]. As seen in the introduction, melody extraction
differs from both monophonic and multi-pitch estimation in
two important ways. Unlike monophonic pitch estimation, here
we are dealing with polyphonic material and the challenges it
entails (cf. Section I). Unlike multi-pitch estimation, melody
extraction requires the identification of the specific voice that
carries the melody within the polyphony, but does not involve
estimating the pitch values of the remaining sources.

It is instructive to consider melody extraction systems as
elaborations of monophonic pitch trackers. Monophonic pitch
trackers usually take the audio signal x(t) and calculate a
function Sx(fτ , τ) evaluated across a range of candidate pitch
frequencies f that indicates the relative score or likelihood of
the pitch candidates at each time frame τ . The function can be
calculated either in the time domain (e.g. the autocorrelation
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TABLE I
ALGORITHMIC ARCHITECTURE OF 16 MELODY EXTRACTION ALGORITHMS FROM MIREX FROM 2005 TO 2012.

First author/
MIREX year

Preprocessing Spectral Transform and
Processing

Multipitch Rep.
(salience function)

Tracking Voicing Approach
Type

Paiva 2005
[18]

- Auditory model +
autocorrelation peaks

Summary correlogram Multipitch trajectories +
note deletion

Salience
valleys

Salience
based

Marolt 2005
[19]

- STFT + SMS harmonics
plus noise

EM fit to tone models Fragments + fragment
clustering

Loudness
filter

Goto 2005
[20]

Bandpass filter Multirate filterbank + IF-
based peak selection

EM fit to tone models Tracking agents -

Cancela 2008
[21]

- Constant-Q + high pass
filter + log power norm.

Harmonicity map Contour tracking +
weighting + smoothing

Adaptive
threshold

Ryynänen
2008 [5]

- STFT + spectral whiten-
ing

Harmonic summation Note event HMM + global
HMM

Silence
model

Dressler 2009
[22]

- MRFFT + IF peak correc-
tion + magnitude thresh.

Pairwise comparison
of spectral peaks

Streaming rules Dynamic
threshold

Rao 2009 [23] - High resolution FFT +
main-lobe mag. matching

SMS + TWM Dynamic programming NHC
threshold

Salamon 2011
[16]

Equal
loudness filter

STFT + IF peak correction Harmonic summation Contour tracking + con-
tour filtering

Salience
distribution

Jo 2011 [24] - STFT with varying win-
dow length

Harmonic summation Stable candidates + rule
based selection

Implicit

Arora 2012
[25]

- STFT + log spectrum +
peak selection

IFT of log spectrum Harmonic cluster tracking
+ cluster score

Harm. sum.
threshold

Hsu 2010 [26] Harm/perc
sound sep.

MRFFT + vocal partial
discrimination

Normalized sub-
harmonic summation

Global trend + dynamic
programming

Classification Salience
based +
source sep.
preprocessing

Yeh 2012 [27] Harm/perc
sound sep.

MRFFT + vocal partial
discrimination

Normalised sub-
harmonic summation

Trend estimation + HMM -

Durrieu 2009
[28]

Source/filter model for melody source separation Viterbi smoothing Energy
threshold Source

separationTachibana
2011 [29]

Two stage harmonic/percussive sound separation Dynamic programming Signal/noise
ratio thresh.

Poliner 2006
[30]

Downsample
to 8kHz

STFT + limit to 2kHz +
normalise magnitude

N/A Support Vector Machine
classifier

Energy
threshold Data driven

Sutton 2006
[31]

Semitone att.
+ bandpass

N/A N/A HMM combination of
monophonic pitch trackers

Confidence
HMM Monophonic

evaluated over a range of lags) or the frequency domain
(e.g. some function of the magnitude spectrum evaluated over
a range of frequencies). The local estimates of period are
then typically subject to sequential constraints, for instance
via dynamic programming. Thus, the estimated sequence of
pitch values f̂ , represented as a vector with one value for each
time frame, is derived as:

f̂mon = arg max
f

∑
τ

Sx(fτ , τ) + C(f) (1)

where fτ is the τ th element of f , and C(f) accounts for
the temporal constraints. For example, a common choice for
Sx(f, τ) is an autocorrelation function such as:

Sx(f, τ) = rxx(
1

f
; τ) =

1

W

∫ τ+W/2

τ−W/2
x(t)x(t+

1

f
)dt (2)

where W is the length of the autocorrelation analysis window.
In melody extraction, the observed signal y(t) consists of a

target monophonic melody signal x(t) with added accompa-
niment “noise”,

y(t) = x(t) + n(t). (3)

There are two paths to extending monophonic trackers to
succeed in such conditions: We could improve the robustness
of the underlying pitch candidate scoring function, so it
continues to reflect the desired pitch even in the presence
of other periodicities; we call this salience based melody

extraction:

f̂sal = arg max
f

∑
τ

S′y(fτ , τ) + C ′(f) (4)

where S′y is the modified pitch salience function calculated
over the mixed signal y. There are many different approaches
for calculating the salience function (cf. Section III-B3). For
instance, some functions compute the salience of a candidate
frequency f as the weighted sum of its harmonics:

S′y(fτ , τ) =

Nh∑
h=1

g(fτ , h)|Y (h · f, τ)| (5)

where Nh is the number of harmonics in the summation,
g(fτ , h) is a harmonic weighting function [5], and Y (f, τ)
is the short-time Fourier transform,

Y (f, τ) =

∫ W/2

−W/2
w(t)y(τ + t)e−j2πftdt (6)

where w(t) is a windowing function.
Note that in Equation 4 we now use C ′(f) to represent the

temporal constraints instead of C(f), since for the polyphonic
case this is a far more complex problem: even with a modified
salience function there is no guarantee that the frequency of
the melody will always be found at the maximum of the
function. As shall be seen in Section III-B4, this is addressed
by employing tracking techniques such as Viterbi decoding,
tracking agents, clustering, etc.
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Alternatively, we could attempt to decompose the mixed
signal into separate sources, at least one of which, x̂(t), is
dominated by the melody signal to a degree that makes it
suitable for a largely unmodified pitch tracker; we call this
source separation melody extraction:

f̂sep = arg max
f

∑
τ

Sx̂(fτ , τ) + C ′(f) (7)

where x̂(t) is estimated using decomposition or matrix factor-
ization techniques (cf. Section III-C).

A. The MIREX melody extraction evaluations

Since its initiation in 2005, over 50 melody extraction algo-
rithms have been submitted to the Music Information Retrieval
Evaluation eXchange (MIREX) [3]. In this annual campaign,
different algorithms are evaluated against the same set of
music collections in order to obtain a quantitative comparison
between methods and assess the accuracy of the current state-
of-the-art in melody extraction. We believe MIREX is a good
point of reference for this review, given that the large majority
of melody extraction algorithms that have had an impact on
the research community have participated in MIREX at some
point. Due to space limitations, approaches predating 2005
(e.g. [1]) are not discussed in this article, and we refer the
reader to [34] for further information on earlier work.

In Table I we provide a summary of the characteristics of a
selection of 16 representative algorithms out of all the submis-
sions to MIREX since 2005. To do so, we have attempted to
break down the extraction process into a series of steps which
are common to most algorithms. Since some authors submitted
several algorithms over the years, we have opted to include
only their most recent (published) contribution, as in most
cases it represents the latest version in the evolution of a single
algorithm. If a certain step is not included in an algorithm
(or otherwise not mentioned by the authors) a ‘-’ is placed
in the table. ‘N/A’ means a step is not relevant to the method
(e.g. Poliner and Ellis [30] determine the melody directly from
the power spectrum and hence a multipitch representation of
the audio signal is not relevant for this approach). Finally we
note that some algorithms (namely those by Durrieu [28] and
Tachibana [29]) cannot be broken down into the same steps
as the rest of the approaches. This is indicated by fusing the
columns of some steps in the table for these algorithms.

The last column of the table, ‘Approach Type’, attempts to
classify the algorithms based on their underlying approach,
with most falling into the categories of salience based and
source separation introduced above. Some approaches, how-
ever, do not fit into either category, including the data driven
approach in which the power spectrum is fed directly into
a machine learning algorithm which attempts to classify the
melody frequency based on the observed spectrum at each
frame.

Note that while melody extraction includes detecting both
sung melodies and melodies played by lead instruments,
many algorithms are developed particularly for singing voice
extraction. The reason for this is two-fold: first, there is a
large body of popular music with sung melodies, which makes
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Fig. 3. Block diagram of salience based melody extraction algorithms.

vocal melody extraction commercially attractive. Second, the
singing voice has unique characteristics which are different
from most instruments [35], and algorithms can exploit these
unique features to identify the melody more accurately.

B. Salience based approaches
As evident in Table I, the largest set of approaches are

those based on time-frequency representations of pitch salience
(a salience function). The general architecture of these ap-
proaches, with possible sub-steps, is depicted in Figure 3.

1) Preprocessing: As a first step, some approaches apply
some type of preprocessing, normally a filter to enhance
the frequency content where we expect to find the melody:
Goto [20] applies a band pass filter between 261.6Hz and
approximately 4kHz, while Salamon and Gómez [16] apply
a perceptually motivated equal loudness filter [7]. Some ap-
proaches use source separation to enhance the melody signal
before it is further processed: Hsu [26] and Yeh [27] use a
technique originally designed for harmonic-percussive sound
separation (HPSS) adapted to perform melody-accompaniment
separation (cf. Section III-C).

2) Spectral transform and processing: Next, the signal
is chopped into time frames and a transform function is
applied to obtain a spectral representation of each frame. The
most straight forward approach is to apply the short-time
Fourier transform (STFT), with a window length typically
between 50 and 100ms [5], [16], [19], [23], [25]. Such a
window length usually provides sufficient frequency resolution
to distinguish different notes while maintaining adequate time
resolution to track pitch changes in the melody over short
time periods. Still, some approaches attempt to overcome the
time-frequency resolution limitation inherent to the Fourier
transform by applying a multiresolution transform such as a
multirate filterbank [20], the constant-Q transform [21] or the
multi-resolution FFT (MRFFT) [26], [27], [36]. In general,
these transforms use larger windows at low frequencies (where
we require greater frequency resolution to resolve close notes)
and small windows at higher frequencies (where we need high
temporal resolution to track rapidly changing harmonics). In
[16] a comparison between the STFT and MRFFT showed
there was no statistically significant difference between using
one transform over another for melody extraction. Nonethe-
less, since each step in a melody extraction system is highly
sensitive to the output of the preceding step, it is possible
that some algorithms do benefit from using multiresolution
transforms. Finally, we note that some methods use transforms
designed to emulate the human auditory system [7] such as
the model used by Paiva [18].

After applying the transform, most approaches only use the
spectral peaks for further processing. Apart from detecting the
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Fig. 4. Example of the output of a salience function for an excerpt of vocal
jazz (example (a) from Figure 2) computed using the algorithm proposed in
[16].

peaks themselves, different peak processing techniques may
be applied: some methods filter peaks based on magnitude or
sinusoidality criteria in an attempt to filter out peaks that do
not represent harmonic content or the lead voice [19], [20],
[23], [26], [27]. Other approaches apply spectral magnitude
normalization in an attempt to reduce the influence of timbre
on the analysis – Cancela [21] and Arora [25] take the log
spectrum and Ryynänen and Klapuri (who use the whole
spectrum, not just the peaks) apply spectral whitening [5].
Finally, Dressler [36] and Salamon and Gómez [16] obtain
more accurate frequency and amplitude estimates for each
spectral peak by computing its instantaneous frequency from
the phase spectrum.

3) Salience function: At the core of salience based al-
gorithms lies the multipitch representation, i.e. the salience
function. This function provides an estimate of the salience
of each possible pitch value (within the range where we
expect to find the melody) over time. An example of the
output of a salience function (used by Salamon and Gómez
[16]) is depicted in Figure 4. The peaks of this function are
taken as possible candidates for the melody, which are further
processed in the next stages. Different methods can be used
to obtain a salience function: most approaches use some form
of harmonic summation, by which the salience of a certain
pitch is calculated as the weighted sum of the amplitude of
its harmonic frequencies [5], [16], [21], [24], [26], [27]. Goto
[20] and Marolt [19] use expectation maximisation to fit a
set of tone models to the observed spectrum. The estimated
maximum a posteriori probability (MAP) of the tone model
whose f0 corresponds to a certain pitch is considered to be
the salience of that pitch. Other approaches include two-way
mismatch computed by Rao [23], summary autocorrelation
used by Paiva [18] and pairwise analysis of spectral peaks
as done by Dressler [37].

As evident in Figure 4, the salience function approach has
one main undesirable effect – the appearance of “ghost” pitch

values whose f0 is an exact multiple (or sub-multiple) of
the f0 of the actual pitched sound. This effect can lead to
what is commonly referred to as octave errors, in which an
algorithm selects a pitch value which is exactly one octave
above or below the correct pitch of the melody. (This type of
error can be observed in example (c) of Figure 2). Different
algorithms adopt different strategies to reduce the number
of octave errors they commit. Some algorithms, such as the
ones by Cancela [21] and Dressler [22] attempt to directly
reduce the number of ghost pitch values present in the salience
function. Dressler does this by examining pairs of spectral
peaks which potentially belong to the same harmonic series
and attenuating the result of their summation if there are many
high amplitude spectral peaks whose frequencies lie between
the pair being considered. Cancela attenuates the harmonic
summation supporting a certain f0 if the mean amplitude of
spectral components at frequencies 2k ·f0, 3k ·f0/2 and 3k ·f0
is above the mean of the components at frequencies k · f0
(this will attenuate ghost pitch values whose f0 is 1/2, 2/3
or 1/3 of the real f0). In [34], Klapuri proposes a method
for reducing octave errors based on spectral smoothness. The
amplitude of each peak in the salience function is recalculated
after smoothing the spectral envelope of its corresponding
harmonic frequencies. Peaks representing octave errors will
have an irregular envelope (compared to a smoother envelope
for real notes) and thus will be attenuated by this process.
An alternative approach for coping with octave errors is
proposed by Paiva [18] and Salamon [16], who first group
the peaks of the salience function into pitch contours and
then determine which contours are actually ghost contours
and remove them. The underlying idea is that once salience
peaks are grouped into contours, detecting duplicate contours
becomes easier since they have identical trajectories one octave
apart. Determining which of the two is the ghost contour is
done using criteria based on contour salience and the overall
pitch continuity of the melody. Finally, we note that practically
all methods reduce octave errors non-explicitly by penalizing
large jumps in pitch during the tracking stage of the algorithm.

4) Tracking: Given the peaks of the salience function, the
remaining task is to determine which peaks (i.e. pitch values)
belong to the melody. This is one of the most crucial stages
of each algorithm and, interestingly, it is also perhaps the
most varied step where practically every algorithm uses a
different approach. Most approaches attempt to directly track
the melody from the salience peaks, though some (namely
Paiva, Marolt, Cancela and Salamon) include a preliminary
grouping stage where peaks are grouped into continuous pitch
contours (also referred to as ‘fragments’ or ‘trajectories’) out
of which the melody is later selected [16], [18], [19], [21]. This
grouping is usually performed by tracking sequential peaks
based on time, pitch and salience continuity constraints. Given
the pitch contours (or salience peaks if no grouping is applied),
a variety of tracking techniques have been proposed to obtain
the final melody sequence: Marolt [19] uses clustering, while
Goto [20] and Dressler [22] use heuristic-based tracking
agents. Ryynänen [5] and Yeh [27] use HMMs, while Rao
[23] and Hsu [26] use dynamic programming. Finally, Paiva
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Fig. 5. Block diagram of source-separation based melody extraction
algorithms.

[18] and Salamon [16] take a different approach – rather than
tracking the melody, they attempt to delete all pitch contours
(or notes) which do not belong to the melody.

5) Voicing: An important part of melody extraction which
is sometimes overlooked is voicing detection. That is – deter-
mining when the melody is present and when it is not. The
voicing detection step of an algorithm is usually applied at
the very end, though exceptions do exist (e.g. Salamon uses a
threshold based on the salience distribution of pitch contours
in the entire piece to remove non-salient contours before pro-
ceeding to filter out other non-melody contours). A common
approach is to use a fixed or dynamic per-frame salience-based
threshold, as done by Paiva, Marolt, Cancela, Dressler, Rao
and Arora. Alternative strategies include Ryynänen’s algorithm
which incorporates a silence model into the HMM tracking
part of the algorithm, and Hsu’s algorithm which uses timbre
based classification to determine the presence (or absence) of
human voice.

C. Source separation based approaches

An alternative strategy to salience based melody extraction
is to use source separation algorithms to isolate the melody
source from the mixture. A block diagram illustrating some
of the strategies for melody extraction using source separation
is provided in Figure 5. This type of approach is the most
recent of the ones mentioned in Table I, and has gained
popularity in recent years following the advances in audio
source separation research. While there is a large body of
research on melody and lead voice source separation (cf. [28],
[38]–[43] and references therein), such algorithms are usually
evaluated using measures based on signal to noise ratios,
and only few have been evaluated in terms of estimating the
frequency sequence of the melody, as is our goal here.

Two methods in Table I are source separation based – those
of Durrieu et al. [28] and Tachibana et al. [29]. Durrieu models
the power spectrogram of the signal as the instantaneous sum
of two contributions: the lead voice and the accompaniment.
The contribution of the lead voice is represented with a
source/filter model, and the contribution of the accompaniment
as the sum of an arbitrary number of sources with distinct
spectral shapes. Two different representations are proposed
for the source/filter model: a Smooth Instantaneous Mixture
Model (SIMM) and a Smooth Gaussian Scaled Mixture Model
(SGSMM). The former represents the lead instrument (or
voice) as the instantaneous mixture of all possible notes,
while the latter is more realistic in that it only allows one

source/filter couple to be active at any moment, albeit com-
putationally heavier. In both cases, the model parameters are
estimated using an expectation maximization framework. Once
the model parameters are estimated, the final melody sequence
is obtained using the Viterbi algorithm to find a smooth
trajectory through the model parameters (which include the
f0 of the source). Voicing detection is done by first using
Wiener filtering to separate the melody signal based on the
estimated model parameters, and then computing the energy
of this signal at every frame to determine an energy threshold
for frames where the melody is present.

The approach proposed by Tachibana et al. is quite distinct.
It is based on exploiting the temporal variability of the melody
compared to more sustained chord notes. To do so, they make
use of the Harmonic-Percussive Sound Separation (HPSS)
algorithm [44]. The algorithm was originally designed to sep-
arate harmonic from percussive elements in a sound mixture
by separating sources which are smooth in time (harmonic
content) and sources smooth in frequency (percussive content).
By changing the window length used for the analysis, the
algorithm can be used to separate “sustained” (i.e. chord)
sounds from “temporally variable” (melody + percussive)
sounds. Once the accompaniment is removed, the algorithm
is run again, this time in its original form in order to remove
percussive elements. After these two passes, the melody in the
resulting signal should be significantly enhanced. The melody
frequency sequence is obtained directly from the spectrogram
of the enhanced signal using dynamic programming by finding
the path which maximizes the MAP of the frequency sequence,
where the probability of a frequency given the spectrum is
proportional to the weighted sum of the energy at its harmonic
multiples, and transition probabilities are a function of the
distance between two subsequent frequency values. Voicing
detection is done by setting a threshold on the (Mahalanobis)
distance between the two signals produced by the second run
of the HPSS algorithm (the melody signal and the percussive
signal).

Finally, in Table I we see that some authors attempt to
combine salience based and source separation approaches.
Here, source separation is used as a preprocessing step to
attenuate the accompaniment signal, and then a salience func-
tion is computed from the processed signal. Both Hsu [26]
and Yeh [27] use the HPSS method proposed by Tachibana,
but rather than attempt to estimate the melody directly from
the spectrum of the resulting signal, they continue to compute
a salience function and further steps similar to other salience
based approaches.

For completeness, we briefly describe some singing voice
source separation algorithms here. As mentioned earlier, while
these methods have not been evaluated in terms of melody
extraction, they could be used to build melody extraction
systems by combining them with a monophonic pitch tracking
algorithm which estimates the melody f0 sequence from the
separated voice signal, or by using them as a preprocessing
step similar to the aforementioned approaches by Hsu and
Yeh. We have already seen the source/filter model proposed
by Durrieu et al. [28] and the HPSS method employed by
Tachibana et al. [29]. A different strategy for separating the
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lead voice is to exploit the fact that the music accompaniment
often has a repetitive structure, while the voice contains more
variation. Huang et al. [41] exploit this by assuming that
the spectrogram of the accompaniment can be modelled by
a low-rank matrix, and the spectrogram of the voice by a
sparse matrix. They use Robust Principal Component Analysis
(RPCA) to factorize the spectrogram of the signal into the
desired voice and accompaniment matrices. A different way of
exploiting repetition is proposed by Rafii and Pardo [42] – they
first compute the repetition period of the accompaniment using
autocorrelation applied to the spectrogram of the mixture. By
computing the median of the spectrograms of consecutive
repetitions, they obtain a spectrogram which contains only
the repeating signal (the accompaniment). This spectrogram
is used to derive a time-frequency mask which is used to
separate the voice from the accompaniment. This approach
was extended by Liutkus et al. [43] to work on full songs
(where the repetition period can change between verse and
chorus) by searching for local periodicities in a song, and again
by Rafii and Pardo by applying the algorithm to local windows
of the signal and by computing a self-similarity matrix to better
identify repeating segments in a song. In [42] the authors also
present some experiments on combining their approach with
existing pitch trackers to perform melody extraction, and we
expect to see an increase in the number of source-separation-
based melody extraction algorithms participating in MIREX
in the future.

D. Alternative approaches

While most melody extraction approaches are either salience
or source separation based, some very different strategies have
been proposed as well. The first to appear in Table I is the
data driven approach by Poliner and Ellis [30]. Rather than
handcraft knowledge about musical acoustics into the system
(e.g. in the form of a salience function based on harmonic
summation), they propose to use machine learning in order to
train a classifier to estimate the melody note directly from the
power spectrum. As a preprocessing step they downsample
the audio to 8kHz, and use the STFT to obtain a spectral
representation. Bins corresponding to frequencies above 2 kHz
are discarded and the magnitude of the remaining bins is
normalized over a short time period to reduce the influence
of different instrument timbres. The resulting 256 feature
vector is used to train a support vector machine classifier
using training data where each frame is labeled with one of
60 possible output classes corresponding to 60 MIDI notes
spanning five octaves. Voicing detection is done by means
of a global threshold based on the magnitude squared energy
found between 200 and 1800 Hz.

Another completely different strategy is the one proposed
by Sutton et al. [31]. Rather than design an algorithm to handle
polyphonic audio signals, they compute the pitch sequences re-
turned by two different monophonic pitch estimators and then
combine them using an HMM. The underlying assumption is
that while monophonic pitch estimators are not designed to
handle audio where there is more than one pitch present at a
time (normally leading to a large degree of estimation errors),

by combining the output of different estimators a more reliable
result could be obtained.

IV. EVALUATION: MEASURES AND MUSIC COLLECTIONS

As explained earlier, melody extraction algorithms are ex-
pected to accomplish two goals: estimate the correct pitch of
the melody (pitch estimation), and estimate when the melody
is present and when it is not (voicing detection). The output of
a melody extraction algorithm typically includes two columns,
the first with timestamps at a fixed interval (e.g. for MIREX
a 10 ms interval is used), and the second with f0 values
representing the algorithm’s pitch estimate for the melody at
each timestamp (i.e. at each analysis frame). Algorithms can
report a pitch even for frames where they estimate the melody
to be absent (non-melody frames), in this way allowing us to
evaluate pitch estimation and voicing detection independently.

To evaluate the performance of an algorithm for a given
audio excerpt, we compare the algorithm’s output with the
excerpt’s ground truth. The ground truth file has the same
format as the output file, and contains the correct series
of f0 values representing the melody of the excerpt. The
ground truth is produced by running a monophonic pitch
tracker on the solo melody track of the excerpt (meaning
we require access to the multitrack recording of every song
we use for evaluation). Using a graphical user interface such
as SMSTools3 or WaveSurfer4, the output of the monophonic
pitch tracker is manually inspected and corrected if necessary.
Given the ground truth file, an algorithm is evaluated by
comparing its output on a per-frame basis to the ground truth.
For non-melody frames in the ground truth, the algorithm
is expected to indicate that it has detected the absence of
melody. For melody frames, the algorithm is expected to return
a frequency value matching the one in the ground truth. An
algorithm’s frequency estimate is considered correct if it is
within 50 cents (i.e. half a semitone) of the ground truth.

A. Measures
Based on this per-frame comparison, we compute five global

measures which assess different aspects of the algorithm’s
performance for the audio excerpt in question. These measures
were first used in MIREX 2005 [2], and have since become
the de facto set of measures for evaluating melody extraction
algorithms. If the system’s estimated melody pitch frequency
vector is f and the true sequence is f∗, let us also define a
voicing indicator vector v, whose τ th element vτ = 1 when
a melody pitch is detected, with corresponding ground truth
v∗. We also define an “unvoicing” indicator v̄τ = 1 − vτ .
Recall that an algorithm may report an estimated melody pitch
(fτ > 0) even for times where it reports no voicing (vτ = 0).
Then the measures are:
• Voicing Recall Rate: The proportion of frames labeled

as melody frames in the ground truth that are estimated
as melody frames by the algorithm.

Recvx =

∑
τ vτv

∗
τ∑

τ v
∗
τ

(8)

3http://mtg.upf.edu/technologies/sms
4http://www.speech.kth.se/wavesurfer/
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• Voicing False Alarm Rate: The proportion of frames
labeled as non-melody in the ground truth that are mis-
takenly estimated as melody frames by the algorithm.

FAvx =

∑
τ vτ v̄

∗
τ∑

τ v̄
∗
τ

(9)

• Raw Pitch Accuracy: The proportion of melody frames
in the ground truth for which fτ is considered correct
(i.e. within half a semitone of the ground truth f∗τ ).

Accpitch =

∑
τ v
∗
τT [M(fτ )−M(f∗τ )]∑

τ v
∗
τ

(10)

where T is a threshold function defined by:

T [a] =

{
1 if |a| < 0.5

0 if |a| ≥ 0.5
(11)

and M maps a frequency in Hertz to a melodic axis
as a real-valued number of semitones above an arbitrary
reference frequency fref (55 Hz, or A1, in this work):

M(f) = 12 log2

(
f

fref

)
(12)

• Raw Chroma Accuracy: As raw pitch accuracy, except
that both the estimated and ground truth f0 sequences
are mapped onto a single octave. This gives a measure
of pitch accuracy which ignores octave errors, a common
error made by melody extraction systems:

Accchroma =

∑
τ v
∗
τT [〈M(fτ )−M(f∗τ )〉12]∑

τ v
∗
τ

(13)

Octave equivalence is achieved by taking the difference
between the semitone-scale pitch values modulo 12 (one
octave), where

〈a〉12 = a− 12b a
12

+ 0.5c. (14)

• Overall Accuracy: this measure combines the perfor-
mance of the pitch estimation and voicing detection tasks
to give an overall performance score for the system.
It is defined as the proportion of all frames correctly
estimated by the algorithm, where for non-melody frames
this means the algorithm labeled them as non-melody,
and for melody frames the algorithm both labeled them
as melody frames and provided a correct f0 estimate for
the melody (i.e. within half a semitone of the ground
truth):

Accov =
1

L

∑
τ

v∗τT [M(fτ )−M(f∗τ )] + v̄∗τ v̄τ (15)

where L is the total number of frames.
The performance of an algorithm on an entire music col-

lection for a given measure is obtained by averaging the
per-excerpt scores for that measure over all excerpts in the
collection.

TABLE II
TEST COLLECTIONS FOR MELODY EXTRACTION EVALUATION IN MIREX.

Collection Description
ADC2004 20 excerpts of roughly 20 s in the genres of pop, jazz and

opera. Includes real recordings, synthesized singing and
audio generated from MIDI files. Total play time: 369 s.

MIREX05 25 excerpts of 10-40 s duration in the genres of rock,
R&B, pop, jazz and solo classical piano. Includes real
recordings and audio generated from MIDI files. Total
play time: 686 s.

INDIAN08 Four 1 minute long excerpts from north Indian classical
vocal performances. There are two mixes per excerpt with
differing amounts of accompaniment resulting in a total
of 8 audio clips. Total play time: 501 s.

MIREX09
(0dB)

374 Karaoke recordings of Chinese songs (i.e. recorded
singing with karaoke accompaniment). The melody
and accompaniment are mixed at a 0 dB signal-to-
accompaniment ratio. Total play time: 10,020 s.

MIREX09
(-5dB)

Same 374 excerpts as MIREX09 (0dB), but here the
melody and accompaniment are mixed at a -5 dB signal-
to-accompaniment ratio. Total play time: 10,020s.

MIREX09
(+5dB)

Same 374 excerpts as MIREX09 (0dB), but here the
melody and accompaniment are mixed at a +5 dB signal-
to-accompaniment ratio. Total play time: 10,020 s.

B. Music collections

Over the years, different research groups have contributed
annotated music collections for evaluating melody extraction
in MIREX. The limited amount of multitrack recordings freely
available, and the time-consuming annotation process, mean
most of these collections are relatively small compared to those
used in other MIR tasks. The collections currently used for
evaluation in MIREX, which have remained fixed since 2009,
are described in Table II.

V. PERFORMANCE: 2005 TO DATE

A. Extraction accuracy

In Figure 6 we present the results obtained by the 16
algorithms in Table I for the MIREX evaluation collections.
Note that some algorithms only participated in MIREX before
all the collections were added, meaning we only have partial
results for these algorithms. This is indicated in the graph
with vertical dashed lines which separate the algorithms that
were only evaluated on some of the collections (to the left
of the line) from those evaluated on all collections (to the
right of the line). We only compute the mean for algorithms
evaluated on all six collections. To get a general idea of the
performance of the algorithms it is sufficient to focus on
two evaluation measures – the raw pitch accuracy (Figure
6a) and the overall accuracy (Figure 6b). The former tells
us how well the algorithm tracks the pitch of the melody,
and the latter combines this measure with the efficiency
of the algorithm’s voicing detection, meaning the voicing-
related measures are (to an extent) also reflected in this
measure. Starting with the raw pitch, the first thing we note
is that the accuracy of all algorithms varies depending on
the collection being analyzed. While some collections are
generally harder for all approaches (e.g. MIREX09 (-5dB)
where the accompaniment is louder and masks the melody),
in general the variability in performance is not homogeneous.
This highlights the advantages and disadvantages of different
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Fig. 6. (a) Raw pitch accuracy and (b) Overall accuracy obtained in MIREX by the 16 melody extraction algorithms in Table I. The vertical dashed line
separates the algorithms that were only evaluated on some of the collections (left of the line) from those evaluated on all six collections (right of the line).

approaches with respect to the music material being analyzed.
For instance, we see that Dressler’s method outperforms all
others for the ADC2004 and MIREX05 collections, which
contain a mixture of vocal and instrumental pieces, but does
not for the other collections where the melody is always
vocal. On the one hand this means that her approach is
generalizable to a wider range of musical material, but on
the other hand we see that approaches that take advantage
of specific features of the human voice (e.g. Tachibana or
Salamon) can do better on vocal melodies. We also see that
the HPSS melody enhancement applied by Hsu, Tachibana and
Yeh is particularly advantageous when the melody source is
relatively weak compared to the accompaniment (MIREX09
(-5dB)). Finally, examining the raw pitch accuracy results for
the MIREX05 collection, we see that results have improved
gradually from 2005 to 2009, after which raw pitch accuracies
have remained relatively unchanged (more on the evolution of
performance in Section V-B). Overall, we see that the average
pitch accuracy over all collections lies between 70-80%.

Turning over to the overall accuracy, we see that perfor-
mance goes down compared to the raw pitch accuracy for all
algorithms, since voicing detection is now factored into the
results. Note that the results for Goto and Yeh are artificially
low since these methods do not include a voicing detection
step. The importance of this step depends on the intended use
of the algorithm. For example, if we intend to use it as a
first step in a transcription system, it is very important that
we do not include notes that do not belong to the melody in
our output. On the other hand, similarity-based applications
which rely on matching algorithms that can handle gaps in
the alignment of melodic sequences may be less sensitive
to voicing mistakes. If we look at the average results over
all 6 collections, we see that the algorithms obtaining the
best overall accuracy are those that obtain good raw pitch
accuracy combined with an effective voicing detection method.
Generally, we see that overall accuracy results lie between
65% and 75% for the best performing algorithms. While this

clearly indicates that there are still many challenges remaining
(cf. Section VII), this degree of accuracy is in fact good
enough for new applications to be built on top of melody
extraction algorithms (cf. Section VI).

Finally, we note that one important aspect of performance
that is not reflected in Figure 6 is the computational cost of
each approach. Depending on the intended application, we
may have limited resources (e.g. time, computing power) and
this can influence our decision when choosing which algorithm
to use. While deriving O-notation complexity estimates is
too complicated for some of the algorithms, generally we
observe that algorithms involving source separation techniques
(which are often implemented as iterative matrix operations)
tend to be significantly more computationally complex than
salience based approaches. In this respect Dressler’s algorithm
is of particular interest, obtaining both the lowest runtime
and the highest mean overall accuracy amongst the algorithms
participating in 2009 (only Salamon & Gómez obtain a higher
mean accuracy, but there is no runtime information for 2011).

B. Are we improving?

In the previous section we noted that for some collections
performance has not improved much over the last 3-4 years.
In Figure 7 we present the evolution of the overall accuracy
obtained for the six MIREX collections over the years. For
each collection, we plot the best overall accuracy result
obtained up to a given year (e.g. for 2008 we plot the best
result obtained up to 2008, for 2009 the best result obtained
up to 2009, etc.). Indeed, our previous observation seems to
be confirmed – for the two earliest collections (ADC2004 and
MIREX05), we observe a steady improvement in results from
2005 to 2009, after which performance does not improve.
For the more recent collections (INDIAN08 and the three
MIREX09 collections) we see a gradual improvement up to
2011; in 2012 no algorithm outperformed its predecessors for
any of the collections. This highlights an important limitation
of the MIREX evaluation campaign – since the collections are
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Fig. 7. Evolution of the best overall accuracy result over the years for the
six MIREX collections.

kept secret, it is very hard for researchers to learn from the
results in order to improve their algorithms. This limitation is
discussed further in Section VII.

VI. SOFTWARE AND APPLICATIONS

A. Software

While various melody extraction algorithms have been
proposed, relatively few implementations are freely available
for people to download and use. Such tools are important
for facilitating comparative evaluations, increasing the repro-
ducibility of research and facilitating the development of new
applications which make use of melody extraction technology
(cf. Section VI-B). Below we provide a list of known melody
extraction related tools which are freely available:
• LabROSAmelodyextract20055: includes the code for

the melody extraction system submitted by Poliner and
Ellis to MIREX 2005 [30]. Runs on Linux and OSX
systems and requires both Matlab and Java.

• FChT6: is an open source Matlab/C++ implementation
of the Fan Chirp Transform (FChT) and f0gram (salience
function) proposed by Cancela et al. in [45].

• separateLeadStereo7: is an open source python imple-
mentation of the algorithm by Durrieu et al. reported in
[40]. The code includes functionality for melody extrac-
tion, as well as lead instrument/accompaniment source
separation.

• IMMF0salience8: is an open-source vamp plug-in9 for
visualising a salience function derived from the interme-
diate steps of the algorithm by Durrieu et al. [28], [40].

• MELODIA10: is a vamp plug-in available as a compiled
library for Windows, OSX and Linux. The plug-in imple-
ments the melody extraction algorithm by Salamon and

5http://labrosa.ee.columbia.edu/projects/melody/
6http://iie.fing.edu.uy/investigacion/grupos/gpa/fcht.html
7http://www.durrieu.ch/research/jstsp2010.html
8https://github.com/wslihgt/IMMF0salience
9http://www.vamp-plugins.org/
10http://mtg.upf.edu/technologies/melodia

Gómez [16], and in addition to its final output (i.e. the
f0 sequence of the melody) it provides visualizations of
intermediate steps of the algorithm such as the salience
function and pitch contours computed before selecting the
final melody.

For completeness, we also briefly mention some commer-
cially available software: Dressler’s algorithm is incorporated
in Fraunhofer’s “Melody Extraction for Music Games” li-
brary11, and certain melody extraction functionality is also
incorporated in Adobe Audition (cf. footnote 1) and Melodyne
(cf. footnote 2), though the details of the algorithms used in
these products are not published.

B. Applications based on melody extraction
The advances in algorithmic performance of melody extrac-

tion algorithms over the past decade mean they now provide
sufficiently good results for more complex applications to be
built on top of them. Below we provide a summary of some of
these applications, whose wide range evidences the importance
of melody extraction algorithms for MIR and computational
music analysis.

1) Retrieval: One of the most commercially attractive
applications for melody extraction is music retrieval. That
is, helping users find the music they are interested in or
discover new music by means of automatically analysing and
comparing songs. Within this large application area we high-
light two different yet related retrieval applications: version
identification (version ID) and query-by-humming (QBH).
Version ID (also known as cover song ID) is the task of
automatically retrieving different versions of a musical record-
ing provided to the system by the user. Use cases range
from the detection of copyright violations on websites such
as YouTube, to automating the analysis of how musicians
influence each other’s compositions. Since the melody is often
one of the few musical facets that remain unchanged across
different renditions, various studies have explored the use of
melody extraction for version ID, either by attempting to fully
transcribe it [46], by using it as a mid-level representation for
computing similarity [47] or by combining it with other tonal
features (e.g. harmony, bass line, or the accompaniment as a
whole) [8], [9].

The second retrieval task, QBH, is designed to help in the
scenario where the user remembers the melody of a song but
does not have any of its editorial information (e.g. title, album
or artist). QBH systems help the user retrieve this information
by allowing them to sing or hum the melody as a search query.
One important problem in the creation of QBH systems is the
generation of a melody database (song index) against which
the sung queries are to be compared. While it is possible
to find MIDI versions of many songs on the Internet, such
an approach will always be limited since it is not feasible
to generate (i.e. transcribe) MIDI files manually for the very
large music collections in existence today. Another solution
is to match queries against other queries (i.e. user recorded
melodies), as performed by SoundHound12. While this avoids

11http://www.idmt.fraunhofer.de/en/Departments and Groups/smt/
products/melody extraction.html

12http://www.soundhound.com
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the need for manual transcription, the approach still suffers
from the same “cold start” problem – a song “does not exist”
until a user records it. This problem can be alleviated by using
melody extraction to automatically create a melody index for
QBH systems. While no commercial QBH system based on
melody extraction has been launched yet, research prototypes
have shown promising results [9], [48], [49].

2) Classification: Automatic music classification attempts
to help individual users as well as managers of large music
corpora to organize their collections by automatically assign-
ing descriptive labels to the songs in these collections. One
of the most commonly used labels for organizing music is
musical genre. The characteristics of the melody are often
related to the musical genre (e.g. use of vibrato, pitch range),
and could help in its identification. In [10] the authors present
a genre classification system based on melody related features
obtained using melody extraction, and demonstrate how com-
bining these features with more commonly used timbre-related
features such as Mel-frequency cepstral coefficients (MFCCs)
can help to improve classification accuracy.

3) De-soloing: Music de-soloing involves “removing” the
lead instrument from a polyphonic music mixture. Doing this
automatically is a highly attractive application for karaoke bars
and fans – any song could automatically be converted into a
karaoke accompaniment. Melody extraction can be used as a
first step for de-soloing by providing a “score” of the melody
which can be used to guide source separation algorithms in
eliminating the melody from the audio mix [11].

4) Transcription: As we have already shown, a mid-level
frequency-based representation of the melody is already very
useful for various applications. However, sometimes transcrib-
ing all the way to symbolic notation (e.g. Western score
notation) is desirable. For starters, music transcription is an
attractive end-goal in its own right – helping users learn music
from automatically generated scores [5]. Automatic transcrip-
tion can also help formalize the symbolic representation of
orally transmitted music traditions, such as Flamenco [13].
Finally, by obtaining a symbolic representation of the melody
we can apply the wide range of techniques that have been
developed for symbolic melodic similarity and retrieval [4]. In
all cases, the first step for obtaining a symbolic transcription
of the melody from a polyphonic recording is by applying a
melody extraction algorithm, whose output is then quantized
in time and pitch to produce musical notes.

5) Computational music analysis: As a final application,
we discuss a couple of examples where melody extraction is
useful for computational music analysis. Unlike the previous
applications, whose goal was to enhance the way we find, rep-
resent and interact with music, here our goal is to learn about
the musical content itself by means of automated analysis. In
[15], the authors combine melody extraction with a pattern
recognition algorithm to detect the presence (or absence) of
musical patterns which were predefined by musicologists.
This type of analysis allows musicologists to study important
aspects of the given musical style, e.g., to confirm existing
musical hypotheses.

In [14], melody extraction is used for a different type of
analysis. Here, melodies are extracted from excerpts of Indian

classical music and summarized as pitch histograms with a
high frequency resolution. The resulting histograms are used
for intonation analysis – an important aspect in Carnatic music
(a type of Indian classical music). The intonation of a singer
can be used to identify the raga of the piece, as well as
characterize the musical expression of the performer.

VII. CHALLENGES

While melody extraction algorithms have improved con-
siderably since 2005, many challenges still remain. In the
following sections we discuss some of the important issues,
in terms of both algorithmic design and evaluation, that future
research on melody extraction will have to address.

A. Instrumental music and high degrees of polyphony

Earlier in our review, we mentioned that while most ap-
proaches can process instrumental music, many of them are
particularly tailored for vocal music. We noted that this stems
both from the popularity of vocal music, and from the unique-
ness of the human voice which can be exploited by algorithms.
However, if we wish to develop algorithms which generalize
to a broader range of music material, melody extraction for
instrumental music must be properly addressed. This presents
two challenges compared with vocal melody extraction: first,
instrumental music is not as constrained as vocal music.
Instruments have a wider pitch range, can produce rapidly
changing pitch sequences and include large jumps in pitch.
Second, an instrument playing the melody may be closer,
both in timbre and in the pitch contour of individual notes,
to other accompanying instruments, which makes the task
of distinguishing the melody from the accompaniment more
complicated.

Regardless of the instrument playing the melody, the task
becomes harder as we increase the number of instruments in
the mixture. This causes greater overlap of spectral content,
making it harder to determine individual pitched sources
correctly. Even when we manage to correctly distinguish the
pitch values of different notes, determining which of these
belong to the melody is now harder. Currently, algorithms are
designed to handle material which is primarily homophonic,
that is, a single dominant lead instrument (or voice) with some
harmonic accompaniment13. Accurately extracting a specific
melody from (for example) a fugue with a high degree of
polyphony and several competing melodic lines is something
current melody extraction algorithms can not do yet. Even
in the simpler homophonic case we can think of challenging
examples for melody extraction, for instance songs that have
backing vocals or even just a second voice. A second voice
will usually move very similarly to the melody, will reside
in the same pitch range and will often be equally loud. This
makes the task of determining which of the two voices is the
actual melody highly challenging.

13Strictly speaking homophonic implies that the accompaniment shares the
same rhythm as the melody, here we use the term more generally to refer to all
music which has a lead melody with some form of harmonic accompaniment.
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B. Voicing detection

When considering algorithmic performance, we saw that the
key to obtaining high overall accuracy is the combination of
high raw pitch accuracy with a good voicing detection method.
To date, most approaches focus primarily on the former aspect
of melody extraction, and less so on the latter (in Table I
we see that some algorithms do not even include a voicing
detection step). Often, voicing detection is only considered at
the very end of the processing chain by applying a simple
global energy threshold. Currently, even the algorithms with
the most effective voicing detection methods obtain an average
voicing false alarm rate (i.e. detecting melody where there isn’t
any) of more than 20%. In [16], the authors note that the most
significant potential improvement in the performance of their
algorithm would come from reducing the voicing false alarm
rate, even though it is already one of the lowest in MIREX.

C. Development cycle and evaluation

In Section V-B we saw that for some MIREX collections
performance has not improved significantly in recent years,
and noted that this highlights a problem in the research and
development cycle of melody extraction algorithms. Since the
MIREX collections (with the exception of ADC2004) are kept
secret for use in future evaluations, researchers have no way of
analyzing the data in order to understand why their algorithms
fail. Without listening to the audio content and examining the
output of intermediate steps of the algorithm, the final results
obtained, even if broken into several metrics, only tell you
where and how you fail, but not why.

For algorithmic research and development, researchers use
open datasets that are freely available. Since preparing a
dataset usually requires access to multitrack recordings and a
considerable amount of manual annotation, there are very few
such collections: the ADC2004 dataset and MIREX05 train
dataset (cf. footnote 5), the MIR-1K14 dataset and the RWC
pop dataset15. But the problem does not end here – the former
two collections, while varied in terms of music material, are
very small in size (20 and 13 excerpts respectively), and the
latter two, which are larger, are limited to a single musical
genre (Chinese and Japanese pop respectively). This means
the collections are either too small to give statistically stable
results, or too homogeneous to represent the universe of
musical styles we would like our algorithms to work on.

The current challenges in melody extraction evaluation are
studied in detail in [50]. The authors focus on three aspects of
evaluation in the MIREX campaign: ground truth generation,
the duration of the excerpts used in test collections, and the
size and content of the collections themselves. They first show
how the lack of a common protocol for generating ground
truth annotations could potentially lead to systematic errors in
evaluation. By comparing algorithms’ performance on excerpts
with their performance on shorter subclips taken from the
same excerpts, they also show that often short excerpts are not
representative of the full song, implying that test collections

14https://sites.google.com/site/unvoicedsoundseparation/mir-1k
15http://staff.aist.go.jp/m.goto/RWC-MDB/

should use complete songs rather than excerpts. Finally, they
discuss the stability and representativeness of the results based
on the size of the datasets, as we have already commented
above. As the authors note, these findings do not invalidate
the MIREX results, but rather emphasize the fact that we
can not generalize them with confidence to significantly larger
datasets of full songs. In an attempt to answer these problems,
the Audio Melody Extraction Annotation Initiative16 (AMEAI)
was launched in late 2012. The goal of the initiative is to
establish a common annotation protocol and compile a new,
open dataset for evaluation. The dataset is planned to be
comprised of full songs, large enough to provide statistically
stable results and varied enough to represent a larger set of
musical genres than those currently represented by existing
evaluation collections.

VIII. CONCLUSION

In this article we provided a review of melody extraction
algorithms, considering not only aspects of algorithmic design
and performance, but also the very definition of the task, its
potential applications and the challenges that still need to be
solved. We started by considering the definition of melody, and
noted that in order to develop and evaluate melody extraction
algorithms we require a simplified and pragmatic definition.
This was achieved by limiting the task to “single source
predominant fundamental frequency estimation from musical
content with a lead voice or instrument”. We described the
challenges melody extraction entails from a signal processing
point of view, and noted the differences between melody
extraction, monophonic pitch estimation and multi-pitch esti-
mation. By means of a case study we highlighted some of the
most common errors made by melody extraction algorithms
and identified their possible causes. Next, we provided a
comprehensive review of algorithmic design by considering
16 of the most relevant algorithms submitted to the MIREX
evaluation campaign since 2005. We noted the great diversity
of approaches and signal processing techniques applied, and
identified two main algorithmic categories: salience based
methods and source separation based methods. The evaluation
measures most commonly used to assess melody extraction
algorithms were described, and algorithmic performance was
considered in terms of these measures. We saw that the best
performing algorithms obtain a raw pitch accuracy between
70-80% and an overall accuracy of between 65-75%. We also
saw that while performance has not improved much for some
of the earlier collections, overall performance has improved
gradually over the years.

Next, we provided a list of freely available melody extrac-
tion software, and considered some of the applications that
have already been built on top of melody extraction algorithms,
including: retrieval (version ID and QBH), genre classification,
automatic de-soloing, music transcription and computational
music analysis. Finally, we considered some of the challenges
that still need to be addressed by the research community. We
noted that current algorithms are primarily designed to handle
homophonic vocal music, and that in the future they will have

16http://ameannotationinitiative.wikispaces.com
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to be extended to handle instrumental and highly polyphonic
material. We highlighted the importance of voicing detection,
and noted the problem in the development cycle caused by
the lack of open evaluation collections. We finally considered
the evaluation process itself, and noted that in order to be
able to generalize the results obtained by melody extraction
algorithms to larger music collections, we require new, larger
and more heterogeneous test collections.

After nearly a decade of formal evaluations, and many
dozens of complete systems, it is fair to ask what we have
learned about the best approaches to this problem. In our
distinction between salience-based and source separation ap-
proaches, we find representatives of both among the best-
performing systems according to the evaluations. One might
argue that further progress in source separation (and full poly-
phonic transcription) will ultimately subsume this problem,
but even despite the issue of greater computational expense,
it remains an open question how best to model the perception
and cognitive processing of the full music signal that goes on
in the heads of listeners, who are not, we assume, performing
a full analysis of the sound into individual sources when they
listen to music. Notwithstanding the difficulties in obtaining a
precise definition, melody is without doubt a very important
and distinct aspect of music information, and systems for
automatically extracting it from music audio are sure to be
central to future music information technologies.
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