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ABSTRACT

Automated classification of organisms to species based on their vo-
calizations would contribute tremendously to abilities to monitor
biodiversity, with a wide range of applications in the field of ecology.
In particular, automated classification of migrating birds’ flight calls
could yield new biological insights and conservation applications for
birds that vocalize during migration. In this paper we explore state-
of-the-art classification techniques for large-vocabulary bird species
classification from flight calls. In particular, we contrast a “shallow
learning” approach based on unsupervised dictionary learning with
a deep convolutional neural network combined with data augmenta-
tion. We show that the two models perform comparably on a dataset
of 5428 flight calls spanning 43 different species, with both signifi-
cantly outperforming an MFCC baseline. Finally, we show that by
combining the models using a simple late-fusion approach we can
further improve the results, obtaining a state-of-the-art classification
accuracy of 0.96.

Index Terms— Convolutional neural networks, bioacoustics,
flight calls, deep learning, data augmentation.

1. INTRODUCTION

Automatic classification of animal vocalizations has great poten-
tial to enhance the monitoring of species movements and behav-
iors. This is particularly true for monitoring nocturnal bird migra-
tion, where automated classification of migrants’ flight calls could
yield new biological insights and conservation applications for birds
that vocalize during migration. Among an increasingly important
array of bioacoustic tools for conservation science [1] that describe
presence, abundance, and behavior of vocal species, there is a sig-
nificant body of research on automatic species classification from
audio (e.g. [2, 3, 4, 5, 6, 7, 8, 9]). See [10] for a detailed sur-
vey of automatic birdsong recognition. Recently, a number of ap-
proaches have been proposed that employ generalizable machine
learning techniques that can be easily adapted to multiple species
[7, 11, 12]. However, these studies were focused on bird song (and
marine mammals), not flight calls. Flight calls are species-specific
vocalizations produced primarily during periods of sustained flight
(i.e. nocturnal migration). Among other differences from vocaliza-
tions analyzed in the aforementioned studies, flight calls are primar-
ily single note vocalizations that are less than 200 ms long, whereas
most songs contain several types of notes and may vary from seconds
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to minutes in duration. Studies focusing specifically on automatic
flight call classification include [13, 14, 15, 16].

For fully automated bioacoustic migration monitoring based on
flight calls, several challenges must be addressed: distinguishing be-
tween flight calls and confounding factors such as geophony (e.g.
wind, water), biophony (e.g. insects, frogs) and anthrophony (e.g.
speech, transportation); distinguishing between the flight calls of a
large number of related target species; and potentially having to deal
with temporally overlapping calls. Here we focus on one of these
challenges, namely distinguishing between a large number of target
species, i.e. large-vocabulary classification.

In this study we explore different state-of-the-art classification
techniques for large-vocabulary bioacoustic classification. In par-
ticular, we contrast the unsupervised dictionary learning approach
presented in [16] with a deep convolutional neural network architec-
ture which, in combination with data augmentation techniques, has
been shown to outperform the dictionary learning approach for en-
vironmental (not bioacoustic) sound classification [17]. To the best
of our knowledge this is the first application of a deep convolutional
neural network to flight call classification, and one of its first ap-
plications to bioacoustic classification in general. It is also the first
application, as far as we know, of audio data augmentation (beyond
simple time shifts) to bioacoustic classification. Furthermore, we ex-
amine whether the dictionary learning method (which we consider a
“shallow learning” technique because it learns a single representa-
tional layer from the input data) and the deep learning architecture
are complementary to each other and whether combining their output
in a late-fusion fashion can yield improved classification accuracy.

2. METHOD

2.1. Unsupervised dictionary learning

Our “shallow learning” approach [16] is based on dictionary learn-
ing. We use the spherical k-means algorithm [18] to learn a dictio-
nary of representative code words, and then encode our data against
the learned dictionary. In this variant of the k-means clustering algo-
rithm [19] the centroids are constrained to have unit L2 norm (pre-
venting them from becoming arbitrarily large or small), and repre-
sent the distribution of meaningful directions in the data. The al-
gorithm is efficient and scalable, competitive with slower and more
complex techniques such as sparse coding, and it has been shown
that its resulting set of centroids can be used as bases (a dictionary)
for mapping new data into a feature space which reflects the dis-
covered regularities [20, 18, 8]. Spherical k-means (SKM) has been
exploited for classifying music [21], birdsong [8], urban (environ-
mental) sounds [22, 23] and most recently flight calls [16].



We learn the dictionary from time-frequency patches (TF-
patches) extracted from the log-scaled mel-spectrogram representa-
tion of each audio clip. The mel-spectrogram consists of 40 bands
between 2000-11025 Hz, and is computed using the Essentia library
[24] with a Hann analysis window of 11.6 ms and a hop size of
1.45 ms. Each TF-patch spans the entire frequency range and has a
duration of 46 ms. Prior to learning the dictionary the data is PCA-
whitened (this improves the discriminative power of the learned
features [18]) keeping components to explain 99% of the variance in
the data as in [21]. We then learn a dictionary with 256 codewords
(centroids), and encode data against it by taking the matrix product
of a datum’s input representation (mel-spectogram) with the dictio-
nary matrix, and summarizing the result over the time-axis using
three summary statistics (mean, standard deviation and maximum).
The resulting features are used to train (and test) a Support Vector
Machine (SVM) classifier with a radial basis function kernel imple-
mented in Python using Scikit-learn [25]. For further details about
the algorithm and the choice of parameters the reader is referred to
[16].

2.2. Deep convolutional neural network

We use the deep convolutional neural network (CNN) architecture
proposed for environmental sound classification in [17]. The model
is comprised of 3 convolutional layers interleaved with 2 pooling
operations, followed by 2 fully connected (dense) layers. We use the
same log-scaled mel-spectrograms described in the previous section
as the input to the network, the only exception being that we increase
the number of bands to 128 given the model’s increased capacity.
Since the clips in our evaluation dataset (described below) are of
varying duration, we trim each clip to the middle 150 ms. To make
the network invariant to small time-shifts, each clip is shifted in time
by up to ±10 ms to generate a total of 13 clips. Following [17], the
network is parameterized as follows:

• `1: 24 filters with a receptive field of (5,5), followed by (4,2)
strided (non-overlapping) max-pooling over the time and fre-
quency dimensions respectively, and a rectified linear unit
(ReLU) activation function h(x) = max(x, 0).

• `2: 48 filters with a receptive field of (5,5), followed by (4,2)
strided max-pooling and a ReLU activation function.

• `3: 48 filters with a receptive field of (5,5), followed by a
ReLU activation function (no pooling).

• `4: 64 hidden units, followed by a ReLU activation function.

• `5: 43 output units, followed by a softmax activation function.

During training the model optimizes cross-entropy loss via mini-
batch stochastic gradient descent [26]. We use a constant learning
rate of 0.01 and apply dropout [27] to the input of the last two lay-
ers with probability 0.5. L2-regularization is applied to the weights
of the last two layers with a penalty factor of 0.001. The model is
trained for 100 epochs and is checkpointed after each epoch. A val-
idation set is used to identify the parameter setting (epoch) achiev-
ing the highest classification accuracy. The CNN is implemented in
Python using Lasagne [28], and data stream multiplexing (for train-
ing) is implemented using Pescador [29].

In [17] we also showed that the performance of the CNN model
can be improved by increasing the size of the training set using
data augmentation, that is, the application of audio deformations
that modify the audio signal while maintaining the semantic valid-
ity of the recording’s label. Following this, we apply the follow-
ing augmentations: adding background noise (from 4 different field

recordings captured at night containing geophony), dynamic range
compression (using 4 parameterizations: music, film, speech, radio),
pitch shifting (by 4 conservative values of -0.5, -0.25, 0.25, 0.5 semi-
tones, and 4 less conservative values of -2, -1, 1, 2 semitones), and
time stretching (by 4 ratios: 0.81, 0.93, 1.07, 1.23). The augmenta-
tions are applied using the MUDA library [30], to which the reader
is referred for further details about the implementation of each audio
deformation.

An important point for this study is that the deformations ap-
plied should maintain the semantic, and in our case biological, va-
lidity of the labels. That is, the resulting flight calls must still re-
semble plausible calls by each species after augmentation. Variation
in these signals is typically significantly greater among species than
within species, in particular with differences in syllabic structure,
duration, and frequency [31, 32]. However, individual variation in
flight calls of nocturnally migrating birds has been documented by
a small number of studies, primarily in call frequencies and dura-
tion [33, 34, 31, 35] as well as in call structure [36]. For example,
American Redstart (Setophaga ruticilla) typically exhibits variation
of ±15 ms in duration, ±2.3 kHz in frequency, and of five discrete
call structure variants [34]. Of the augmentations applied in this
study, only pitch shifting and time stretching have the potential to
invalidate a recording’s label. To avoid this, the shifting/stretching
parameter ranges were chosen to be within the naturally occurring
ranges for the majority of the species in the evaluation dataset, which
is described further down.

2.3. Baseline

To benchmark the shallow and deep learning approaches, we also
provide the results from the baseline method implemented in [16].
The method extracts Mel-Frequency Cepstral Coefficients (MFCC)
[37] using 40 mel bands and keeps the first 25 coefficients, which are
summarized over time using 11 summary statistics as in [38]. The
resulting feature vectors are used to train (and test) an SVM classifier
with a radial basis function kernel.

3. EVALUATION

For evaluation we use the publicly available CLO-43SD dataset [16].
The dataset is comprised of 5428 audio clips of flight calls from 43
different species of North American wood-warblers (in the family
Parulidae). The clips come from a variety of recording conditions,
including clean recordings obtained using highly-directional shot-
gun microphones, recordings obtained from noisier field recordings
using omnidirectional microphones, and recordings obtained from
birds in captivity using the method described in [35]. Every clip
contains a single flight call from one of the 43 target species. A list
of the species included in this dataset is provided in supplementary
document “S1 Table” of [16].

The methods compared in this study are evaluated in terms of
classification accuracy. We divide the CLO-43SD dataset into 5
folds and perform 5-fold cross validation, and report the results as
a box-plot generated from the per-fold accuracies. For identfying
the best training epoch for the CNN model we use 1 of the 4 training
folds as a validation set, and train on the remaining 3 folds.

4. RESULTS AND DISCUSSION

The results for the MFCC baseline, SKM and CNN models are pro-
vided in Figure 1 (left of the dashed line). Mean accuracies are
indicated by the red squares. We see that both models based on
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Fig. 1. Classification accuracy: baseline (MFCC), dictionary (shal-
low) learning (SKM), deep convolutional neural network (CNN),
and late fusion of the SKM and CNN models (FUSION).

feature learning significantly outperform the MFCC baseline, ob-
taining mean classification accuracies of 0.94 (compared to 0.85 for
the baseline). Interestingly, the CNN does not outperform the SKM
model, unlike the results observed in [17]. It might be possible to
achieve some improvement through further exploration of the CNN
architecture space. Alternatively it might be the case that, despite
the use of data augmentation, there are still some species for which
there aren’t enough samples in the dataset to reflect the range of
natural variation in the species’ flight call. To assess the influence
of data augmentation on the CNN model, we also trained it on the
original dataset without augmentation. This yielded a lower classifi-
cation accuracy of 0.92 (0.916), confirming the beneficial influence
of augmentation on the performance of the CNN model.

Given the results, we wanted to see whether the SKM and CNN
models were making the same predictions (and mistakes) or whether
they were behaving differently. To answer this, in Figure 2 we plot
the difference between the confusion matrix yielded by the CNN
model and the confusion matrix yielded by the SKM model. Along
the diagonal, positive (red) values indicate the CNN makes more cor-
rect predictions and negative (blue) values indicate the SKM model
makes more correct predictions for the corresponding species. Off
the diagonal, positive (red) values indicate greater confusion by the
CNN model for the corresponding pairs of species, while negative
(blue) values indicate greater confusion by the SKM model for the
corresponding pairs of species.

The plot indicates that the two models are in fact making quite
a number of different predictions. Interestingly, not only do they
make different types of confusions (i.e. between different pairs of
species) as indicated by the non-zero values off the diagonal, but
also each model performs better for a specific set of species, as
indicated by the non-zero values along the diagonal of the matrix.
For example, the CNN correctly classifies 8 more BTBW (Black-
throated Blue Warbler) clips compared to the SKM model, whereas
the latter correctly classifies 10 more BTNW (Black-throated Green
Warbler) clips. This indicates that the output of the two models is
potentially complementary. To verify this, we evaluated an “oracle”
model which, given the predictions made by the two models, always
chooses the correct prediction if available (by comparing them to
the reference labels). The oracle yielded a classification accuracy
of 0.97 (0.974), suggesting that given the right fusion approach we

could surpass the 0.94 accuracy obtained by either model on its own.
To this end, we experimented with a number of late-fusion

techniques, in which we combine the output of the models post-
prediction. To do so, we require the “confidence” of each model
in its predictions. For the CNN we simply use the softmax activa-
tion values returned by the last layer of the model. The 43 values
(one for each class) sum to 1 and can be treated as probabilities.
For the SKM model, which uses an SVM classifier, we obtain the
confidence value for each clip by applying Platt scaling to the dis-
tance of the clip from the SVM’s separation hyper-plane [39]. This
results in 43 values for each clip (one per class), which also sum
to 1. To fuse the confidence values returned by the two models,
we experimented with two approaches: the first involved a simple
combination of the confidence values by taking their arithmetic or
geometric mean, and then making a new prediction for each clip by
taking the argmax over the resulting confidence values. The second
approach involved learning the fusion by treating the confidence
values of the two models as features and training a third model (a
discriminative classifier) to predict the label. We experimented with
a number of models including SVM with different kernels, Random
Forest, Logistic Regression and Naive Bayes. Curiously, simply tak-
ing the geometric mean followed by the argmax produced as good
results as the best performing learned fusion (yielded by the SVM)
– a mean classification accuracy of 0.96. The result is displayed
to the right of the dashed line in Figure 1, and the improvement
over the individual SKM and CNN models is statistically significant
(p = 0.0003 according to a paired two-sided t-test).

5. SUMMARY

The automated classification of migrating birds’ flight calls has
the potential to yield new biological insights and conservation ap-
plications for birds that vocalize during migration. In this paper
we explored two state-of-the-art classification techniques for large-
vocabulary bird species classification from flight calls: a “shallow
learning” unsupervised dictionary learning method and a deep con-
volutional neural network combined with data augmentation. The
models were evaluated on a dataset of 5428 flight calls from 43 dif-
ferent species, and were compared against a baseline model based
on MFCCs. We showed that the two models perform comparably,
yielding a mean classification accuracy of 0.94 and significantly
outperforming the MFCC baseline (0.85). We also compared the
performance of the CNN model with and without augmentation and
noted that the augmentation contributes to the performance of the
model. By examining the difference between the confusion matrices
yielded by the CNN and SKM models we noted that they make dif-
ferent types of mistakes and tend to perform better on specific sets
of species. This led us to experiment with late-fusion techniques,
ultimately resulting in a state-of-the-art classification accuracy of
0.96 using a simple geometric mean fusion approach.

In the future we intend to experiment further with the CNN ar-
chitecture to study its influence on performance. We also intend to
apply the insights gained in this study, such as the utility of data aug-
mentation and model fusion, to the task of bird species recognition
in continuous audio streams such as the ones captured by remote
acoustic sensors.
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