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Abstract

The urban sound environment of New York City (NYC) can be, amongst other

things: loud, intrusive, exciting and dynamic. As indicated by the large ma-

jority of noise complaints registered with the NYC 311 information/complaints

line, the urban sound environment has a profound effect on the quality of life

of the city’s inhabitants. To monitor and ultimately understand these sonic

environments, a process of long-term acoustic measurement and analysis is re-

quired. The traditional method of environmental acoustic monitoring utilizes

short term measurement periods using expensive equipment, setup and operated

by experienced and costly personnel. In this paper a different approach is pro-

posed to this application which implements a smart, low-cost, static, acoustic

sensing device based around consumer hardware. These devices can be deployed

in numerous and varied urban locations for long periods of time, allowing for

the collection of longitudinal urban acoustic data. The varied environmental

conditions of urban settings make for a challenge in gathering calibrated sound

pressure level data for prospective stakeholders. This paper details the sensors’

design, development and potential future applications, with a focus on the cali-

bration of the devices’ Microelectromechanical systems (MEMS) microphone in

order to generate reliable decibel levels at the type/class 2 level.

Keywords: smart cities, MEMS, microphone, IEC 61672, calibration, noise,

cyber physical system
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1. Introduction

Noise pollution is an increasing threat to the well-being and public health

of city inhabitants [1]. It has been estimated that around 90% of New York

City (NYC) residents are exposed to noise levels exceeding the Environmental

Protection Agencies (EPA) guidelines on levels considered harmful to people

[2]. The complexity of sound propagation in urban settings and the lack of an

accurate representation of the distribution of the sources of this noise have led to

an insufficient understanding of the urban sound environment. While a number

of past studies have focused on specific contexts and effects of urban noise [3], no

comprehensive city-wide study has been undertaken that can provide a validated

model for studying urban sound in order to develop long-lasting interventions

at the operational or policy level.

To monitor and ultimately foster a greater understanding of urban sound,

an initial network of low-cost acoustic sensing devices [4] were designed and

implemented to capture long-term audio and objective acoustic measurements

from strategic urban locations using wireless communication strategies. These

prototype sensing devices currently incorporate a quad-core Android based mini

PC with Wi-Fi capabilities, and a Microelectromechanical systems (MEMS) mi-

crophone. The initial goal is to develop a comprehensive cyber-physical system

that provides the capability of capturing, analyzing and wirelessly streaming

environmental audio data, along with its associated acoustic features and meta-

data. This will provide a low-cost and scalable solution to large scale calibrated

acoustic monitoring, and a richer representation of acoustic environments that

can empower a deeper, more nuanced understanding of urban sound based on

the identification of sources and their characteristics across space and time. As

part of this goal, work is ongoing to equip the sensors with state-of-the-art ma-

chine listening capabilities, briefly discussed in Section 9.3, such as automatic

sound source identification through the development of novel algorithms. This

approach aims to enable the continuous monitoring and ultimately the under-

standing of these urban sound environments.
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1.1. New York City noise

In 2014 the NYC 311 information/complaints line 1, received 145,252 com-

plaints about noise, up 34% from 2013. As of August 2015, 105,063 noise

complaints have already been registered [5]. NYC has tried to regulate sources

of noise since the 1930s and in 1972 it became the first city in the U.S. to enact

a noise code [6, 7]. As a result of significant public pressure, a revised noise code

went into effect in 2007 [8]. This award-winning code, containing 84 enforceable

noise violations, is widely-considered to be an example for other cities to follow

[9]. However, NYC lacks the resources to effectively and systematically moni-

tor noise pollution, enforce its mitigation and validate the effectiveness of such

action. Generally, the Noise Code is complaint driven. The NYC Department

of Environmental Protection (DEP) inspectors are dispatched to the location of

the complaint to determine the ambient sound level and the amount of sound

above the ambient, where a notice of violation is issued whenever needed. Un-

fortunately, the combination of limited human resources, the transient nature of

sound, and the relative low priority of noise complaints causes slow or in-existent

responses that result in frustration and disengagement.

New York City noise has been the focus of a plethora of studies investigating:

noise levels in relation to air pollutants and traffic [10, 11], noise exposure from

urban transit systems [12, 13, 14] and noise exposure at street level [15]. All of

these highlight the fact that noise is an underrepresented field in urban health

and found that average levels of outdoor noise at many locations around the

city exceed federal and international guidelines set to protect public health.

Sensing of noise conditions using 56 relatively low cost logging sound level meters

(SLMs) was investigated in [11], where general purpose SLMs were used to log

SPL measurements over the period of one week. These type of deployments

can help to identify noise patterns over short periods of time with respect to

other factors such as traffic intensity, but are lacking in their ability to monitor

noise over longer duration’s. Long term noise monitoring is required to allow

1http://www1.nyc.gov/311/index.page
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health researchers to perform better epidemiological studies of environmental

contributions to cardiovascular disease [16].

With its population, its agency infrastructure, and its ever-changing urban

soundscape, NYC provides an ideal venue for a comprehensive study and un-

derstanding of urban sound.

1.2. Type certification and IEC 61672

In order for a piece of equipment to be suitable for acoustic measurement

purposes, it should comply with the sound level meter (SLM) standard IEC

61672-1 [17]. This includes, for example, tolerance limits for a device’s fre-

quency response, self-generated noise and linearity. Two “type” specifications

are defined where type 1 devices, designated Precision, are intended for accu-

rate sound measurements in the field and laboratory, type 2 devices, designated

General Purpose, are intended for general field use. The overall accuracy of

the device is determined by its “type” rating. In the US, the general minimum

type specification for use in noise surveying is type 2. The American National

Standards Institute’s 1983 ANSI S 1.4 [18] for “type” certification shares many

similarities with the more recent 2013 IEC 61672-1, however, the later stan-

dard does make more demands on the sound level meter regarding accuracy,

performance and calibration. It is not the intention of this paper to prove that

this sensor network can be used to generate legally enforceable acoustic data

for a location, but the data that it can provide will be a real-time, continuous

and accurate indication of the acoustic conditions in which each sensor inhabits.

This data stream will help to inform and augment urban noise enforcement pro-

cedures, e.g. optimizing the allocation of in-depth noise assessment personnel

and equipment.

With the current 2013 IEC 61672-1 standard for type ratings, a traditional

MEMS microphone does not allow for the full set of test procedures to be carried

out. The MEMS diaphragm is electrically connected to the pre-amplifier stage

within the microphone’s casing which does not allow for the direct injection of

an electrical test signal to this internal pre-amplifier as defined in Section 5.1.16
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in IEC 61672-1:

5.1.16 The microphone shall be removable to allow insertion of elec-

trical test signals to the input of the pre-amplifier.

Thus, MEMS microphones cannot currently be granted a type rating using

the 2013 IEC specifications. Future revisions to the standard would surely

benefit from an expansion to handle the ever advancing MEMS microphones as

the sensing component for low-cost and scalable noise monitoring solutions.

2. A high quality & scalable acoustic sensor network

The last decade has produced a number of different approaches for environ-

mental noise monitoring. These static acoustic sensor networks vary from expen-

sive, dedicated acoustic monitoring stations to low-cost examples that make use

of consumer grade hardware. Advances in low-power computing, microphone

technology and networking have provided these dedicated stations incremen-

tal upgrades in the form of real-time data transmission capabilities, but these

advancements have had the most profound effect on the more flexible low-cost

sensor nodes which can now perform advanced DSP (digital signal processing)

on audio data captured using high quality microphones and transmit via a num-

ber of wireless networking strategies. These statically deployed acoustic sensors

can be grouped into three general categories, where sensor functionality and

cost are the focus:

2.1. Category 1 - Dedicated monitoring stations

These commercial devices are designed and built for the purpose of accu-

rate, reliable, low-noise and enforceable acoustic monitoring and as such can

cost upwards of $10,000USD. These systems generally consist of high-end, ded-

icated portable logging sound level meters and bespoke network hardware, en-

cased in a weatherized housing. An example from this category is the Bruel

& Kjaer 3639-A/B/C [19], which retails for ≈$15,000USD and includes a type
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1 approved microphone and analysis system with a measurement range from

25-140dBA, the ability to produce 1/3 octave spectral noise data, real-time

wireless data transfer, autonomous operation and a ruggedized casing for long

term exterior operation. Other examples with similar specifications and price

points include the 01dB OPER@ Station [20] and the Larson Davis 831 Noise

Monitoring System [21]. The hardware and software used in these systems is

usually proprietary and therefore does not provide the ability to customize the

functionality to purposes other than basic acoustic monitoring of noise levels,

except through software module purchases such as threshold based event detec-

tion typically costing upwards of $1000 per module. Whilst initial sensor costs

are high, maintenance costs are generally less than in lower cost solutions due

to the specialized and highly engineered nature of these devices. Deployment

durations are generally in the order of a few months at a time due to the high

cost of the hardware and security concerns.

2.2. Category 2 - Moderately scalable sensor network

This group consists of a combination of commercially made and research

group developed devices that provide greater opportunities for larger scale de-

ployments than those of Category 1 with varied accuracy of data. The typical

price point of each node in this group is the $600USD mark. Commercial ex-

amples include the $560USD Libelium Waspmote Plug & Sense, Smart Cities

device [22] which, amongst other things, measures simple dBA values with no

type certification, to give an indication of a location’s sound pressure level.

The Libelium device is ruggedized for exterior use, runs autonomously, and can

transfer data wirelessly to a central server. This system provides no means to

process the incoming audio data as the conversion to dBA values occurs at the

hardware level on the microphones board. A different example in this category

is the RUMEUR network [23] developed by the Noise Observatory Group of

the non-profit organization, Bruitparif, based in Paris. Their network consists

of around 50 ≈$2500USD monitoring stations gathering high quality audio and

accurate acoustic data at the type 1 level, including acoustic event detection.
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This network is also complemented by 350 ≈$550USD lower-cost devices that log

dBA values at the type 2 level. Whilst more scalable than Category 1 networks

these are still limited by relatively high costs and in some cases measurement

inaccuracies.

2.3. Category 3 - Low-cost sensor network

This category of sensor network typically consists of custom made nodes

designed to be inexpensive, low-power and autonomous for large scale deploy-

ments. The majority of these utilize low-power single board computing cores

with low-cost audio hardware. The price point of ≈$150 per sensor node in this

category make it a viable solution for pervasive network deployments. These

networks are currently, predominately developed by university research groups

including the MESSAGE project at Newcastle University [24], whose low-cost

sensors monitor noise levels in dBA, with an effective range from 55-100dBA at

≈3dBA accuracy when compared to a type 1 sound level meter. A similar low-

cost initiative from Finland [25] has produced sensor nodes costing ≈$150USD

that are capable of transmitting dBA values wirelessly using a low-power com-

puting core and audio system capable of an effective range of measurements

from 36-90dBA. This category is clearly the more scalable due to its low cost

sensor nodes, however, in the examples given, the accuracy of acoustic data is

low and the low power computing cores do not allow for any in-situ DSP.

2.4. What makes a high quality & truly scalable acoustic sensor network?

In order to realize a truly scalable, accurate, autonomous and adaptable

system, a combination of attributes from each of the previously mentioned cat-

egories is required. Based on these previous examples of acoustic sensing net-

works, a viable solution for high quality, large scale urban noise monitoring

should provide a minimum of these features:

• The ability to monitor sound pressure levels with a comparable level of

accuracy to city agency standards
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• Enhanced computing capabilities for intelligent, in-situ signal processing

and wireless raw audio data transmission

• Autonomous in its operation

• A low cost per sensor node at the ≈$100USD price point

The presented solution aims to fulfill all of these requirements to provide

a viable solution for advanced, large scale urban acoustic monitoring. The

proposed sensor nodes will be shown empirically to produce acoustic data at the

type 2 level, the high processing power of the computing core will be detailed

including its ability to operate autonomously using a combination of components

that cost less than $100USD in parts.

3. Applications

Acoustic data gathered using the systems deployed sensor network can be

used to identify important patterns of noise pollution across urban settings.

Decision makers at city agencies can then strategically utilize the human re-

sources at their disposal, i.e. by effectively deploying costly noise inspectors to

offending locations automatically identified by the the proposed network. The

continuous and long term monitoring of noise patterns by the network allows

for the validation of the effect of this mitigating action in both time and space,

information that can be used to understand and maximize the impact of future

action. By systematically monitoring interventions, one can understand how

often penalties need to be imparted before the effect becomes long-term. With

sufficient deployment time, 311 noise complaint patterns could also be com-

pared to the network’s data stream in a bid to model and ultimately predict the

occurrence of noise complaints. The overarching goal would be to understand

how to minimize the cost of interventions while maximizing noise mitigation.

This is a classic resource allocation problem that motivates much research on

smart-cities initiatives, including this one.
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The eventual increase in network deployment across large urban areas will

allow for noise mapping with high spatial and temporal resolution. Examples

of the long term goals accomplishable with this approach and the use of exist-

ing geo-located datasets include: how sound impacts on the health of a city’s

population, correlates with urban problems ranging from crime to compromised

educational conditions, and how it affects real estate values.

4. Summary of contributions

This paper details the design and measurement of a low-cost MEMS solution

for a novel acoustic sensing device. These specific contributions are made to the

field of noise monitoring in smart cities:

• Measurements as per the IEC 61672-1 specification for sound level meters

show the suitability of an analog MEMS microphone solution for accurate

urban acoustic monitoring at the type 2 level

• The use of consumer mini PC devices in acoustic sensing devices allow for

advanced signal processing to be performed in-situ for applications such

as automatic sound source classification

• The low cost of the core components of the proposed sensor device provide

an advanced and scalable system for acoustic sensing in smart cities

The paper begins by focusing on the core hardware components of the sen-

sor device, followed by the measurement process carried out on the proposed

MEMS microphone solution. It concludes with a summary of the findings and

a discussion of the future work. As the main focus is on the hardware develop-

ment and testing, the sensor networks software and networking elements have

been omitted in this paper.
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5. Hardware

5.1. Computing core

The proposed sensing node is based around a consumer computing platform

where low cost and high power are of paramount concern. The design philosophy

is based on the creation of a network that provides dense spatial coverage over

a large area, through the deployment of inexpensive and physically resilient

sensors, whose housing considerations are included in [4]. At the core of the

sensing device is a single board Tronsmart MK908ii mini PC running a Linux

Ubuntu 13.04 based operating system. These small and versatile devices shown

in Figure 1 are priced at $50USD as of August 2015 and provide a 1.6GHz

quad core processor, 2GB of RAM, 8GB flash storage, USB I/O, and Wi-Fi

connectivity. The computing power offered by these units allows for complex

digital signal processing to be carried out on the device, alleviating the need to

transmit large amounts of audio data for centralized processing.

Figure 1: Tronsmart MK908ii mini PC

These mini PCs provide an all in one computing solution that incorporates a

number of ready to use Wi-Fi and flash storage components in a small package.

In contrast, other mini PC solutions, such as the ODROID C1+ from Hard

Kernel [26], the BeagleBone Black [27] and the Raspberry Pi 2 Model B [28],

retail at $35-$55, but at that price do not include a suitable USB Wi-Fi module

or any flash storage. These items must be purchased separately. However, when
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purchased in bulk these other devices may become viable solutions in terms of

cost. Table 1 compares the mini PC used to similar solutions as purchased.

Mini PC Cost

(USD)

Cortex CPU RAM Storage Wi-Fi

ODROID C1+ 37 A5 1.5GHz 4 core 1GB DDR3 7 7

Raspberry Pi 2B 35 A7 0.9GHz 4 core 1GB DDR2 7 7

BeagleBone Black 55 A8 1.0GHz 1 core 0.5GB DDR3 4GB 7

Tronsmart MK908ii 50 A9 1.4GHz 4 core 2GB DDR3 8GB 3

Table 1: Comparison of ODROID C1+, Raspbery Pi 2 Model B, BeagleBone Black and

Tronsmart MK908ii

The similar mini PCs currently available contain a less powerful CPU and

reduced RAM making them less amenable for advanced digital signal processing

(DSP) applications such as automatic sound source classification. Based on this

comparison, the Tronsmart MK908ii provides a more complete solution for high

quality acoustic sensing applications owing to its superior processing power,

RAM, inbuilt storage and Wi-Fi module. However, with the constant devel-

opment and subsequent increase in computational power of these single board

computers, solutions such as the Raspberry Pi may become viable solutions in

terms of processing capability in the near future.

USB I/O allows for the inclusion of a USB audio device to handle all analog

to digital conversion (ADC) work, thus providing the means to connect a custom

microphone solution. The USB audio device chosen for this application had

to be: compatible with Linux based devices, low in price, provide input gain

control and a clean signal path. The device selected was the eForCity USB

audio interface which retails for $5USD as of August 2015. It provides a single

microphone input channel with low noise and a software adjustable input gain

stage.

The frequency response of the device was measured and whilst it introduces

filtering with a steep roll-off below 20Hz and above 20kHz, the audible frequency

range is relatively unaffected. Figure 2 shows this response graphically. The

measured noise floor of the device with 0dB of gain applied was -90.1dBV(A),
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Figure 2: eForCity USB audio interface frequency response (20Hz-20kHz) normalized at 1kHz

providing a wide dynamic range for urban acoustic measurement.

5.2. MEMS microphones

In recent years, interest in MEMS microphones has expanded due to their

versatile design, greater immunity to radio frequency interference (RFI) and

electromagnetic interference (EMI), low cost and environmental resiliency [29,

30, 31]. This resiliency to varying environmental conditions is particularly im-

portant for long term acoustic monitoring applications in the harsh subzero

winters and hot and humid summers of NYC. A study characterizing a custom

MEMS microphone solution for acoustic measurement purposes [32] exhibited

a very low temperature coefficient for sensitivity of <0.017dB/◦C. A large vari-

ation in humidity was also shown to have a minimal impact on the MEMS

microphones sensitivity, with decreases of <0.1dB between relative humidity

(%RH) conditions of 40% and 90%.

Current MEMS models are generally 10x smaller than their electret counter-

parts. This miniaturization has allowed for additional circuitry to be included

within the MEMS housing, such as a pre-amp stage and an ADC to output

digitized audio in some models. The production process used to manufacture
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Figure 3: Front/back MEMS microphone custom PCB (Knowles SPU0410LR5H-QB micro-

phone in center of left image)

these devices also provides an extremely high level of part-to-part consistency

in terms of acoustic characteristics such as sensitivity and frequency response,

making them more amenable to multi-capsule and multi-sensor arrays, where

consistency of individual microphones is paramount.

In the proposed prototype microphone system we investigate the Knowles

SPU0410LR5H-QB. The silicone diaphragm MEMS microphone has a manufac-

turer quoted “flat frequency response” between 100Hz and 10kHz. It requires

a maximum 3.6V supply and draws only 120µA. In addition, it is quoted as

having a sensitivity of -38dB re. 1V/Pa and a signal-to-noise ratio of 63dBA.

In order to test the Knowles MEMS microphone a PCB shown in Figure 3 was

designed and fabricated [33]. It was found in testing that the switched mode

power supply noise created by the low-cost AC-DC converters used to power the

MEMS was unnecessarily high, see Section 5.4. To reduce this to acceptable

levels an LT1086 linear voltage regulator was introduced to reduce the noisy

USB 5V down to a clean 3.6V DC supply. The use of adequately shielded audio

cabling is also crucial in this application as the low-level audio signal from the

MEMS microphone board is running in close proximity to the radio frequency

(RF) components of the mini PC. This RF interference (RFI) has been observed

on an un-shielded version of the system as a low-level broadband noise burst at

times of high Wi-Fi activity. A proper shielding and grounding strategy reduces

this RFI noise but does not remove it entirely from the signal chain. The test
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Figure 4: Custom 3D printable microphone mount with four microphone mount pegs shown

on top

results in this paper were gathered using the audio components in isolation with

no RF components present using the configuration described above. The total

cost of the components used in the solution is around $7USD as of August 2015.

5.3. Microphone mount

In order to securely mount the MEMS microphone board a custom ABS

plastic mount was fabricated. This 3D printed component is shown in Figure 4

and ensures the microphone port is unobstructed, protected from water droplets

due to the protruding lip and allows for a windshield to be placed around the

mount to reduce the effects of wind noise on the microphone.

The open space behind the microphone board mount point ensures no Helmholtz

resonances can build up as a result of a closed cavity close to the microphone.

Complex diffraction effects from off-axis sound sources may have an effect on the

response at frequencies of >8.5kHz, which corresponds to the 40mm diameter

of the custom microphone mount. The dimensions and shape of the MEMS mi-

crophone PCB also have the potential to effect response at the >13.5kHz range.

These effects will be investigated in a further stage of testing as mentioned in

Section 9. The top pegs allow the microphone board to be securely seated,

reducing the chance of any mechanical rattling. Externalizing the microphone
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board in this way also reduces the effects of RFI from the mini PC’s Wi-Fi

module located within the sensors aluminum housing.

5.4. Power supply considerations

The current sensor design utilizes a constant connection to a 120V mains

supply via a domestic power outlet. One of the main sources of unwanted noise

in the audio signal chains stems from the audio systems power supply unit or

PSU. The key to recording “clean” analog signals is to provide “clean” power

to the audio system. Any AC noise present on the DC supply of an audio

component will be transferred, to some degree, into the analog audio signal. In

the presented low-cost acoustic sensor a single PSU supplies the 5V DC supply

for the mini PC, which in turn supplies the analog MEMS microphone its 3.6V

DC. A significant source of noise in a sensor such as this is load transients, which

are caused by sudden, large current drains from the mini PC’s Wi-Fi module

and CPU. These produce ringing on the power rails which make their way into

the audio signal if not properly dealt with. A $3USD switched mode PSU was

measured using an oscilloscope after removing its 5V DC component and can

be seen alongside its voltage regulated signal using the LT1086 linear voltage

regulator.

Figure 5 shows the high levels of noise present on the unregulated PSU.

Average peak-peak levels of 350mV were observed. These pulses are the result

of the switching frequency of the switched mode power supply. The regulated

PSU signal shows a vastly improved noise level with a peak-peak average of

17mV.

Figure 6 shows the magnitude spectrum of these DC supply signals. The un-

regulated supply has a large amount of harmonic noise caused by the switching

of the PSU, with its fundamental peak well within the audible range at around

750Hz. The regulated version shows that this high level harmonic content has

been greatly attenuated with reductions of upto 26dBu at certain frequencies.

Power supply conditioning using grounded capacitors on the DC supply can help

in reducing this parasitic AC noise, but in conditions where load transients are
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Figure 7: Prototype open acoustic sensor node showing core components viewed from the

underside

also occurring due to Wi-Fi and CPU activity, an additional voltage regulator

can provide a low-cost, consistent and “clean” DC supply for high quality audio

recording.

5.5. Form factor & cost of parts

The sensor’s prototype housing and form factor is shown in Figure 7. The

low-cost unfinished/unpainted aluminum housing was chosen to reduce RFI in-

terference from external sources, solar heat gain from direct sunlight [34] and

it also allows for ease of machining. All of the sensor’s core components are

housed within this rugged case except for the microphone and Wi-Fi antenna

which is externalized for maximum signal gain.

In the prototype node shown in Figure 7, the MEMS microphone is mounted

externally via a flexible but rigid metal goose-neck allowing the sensor node to

be reconfigured for deployment in varying locations such as building sides, light

poles and building ledges. Acoustic testing of the entire enclosure with the

microphone board mounted with its windshield will be carried out when the

prototype is in a more advanced stage of production.

The total cost of core parts for the prototype sensor node is broken down

in Table 2, with the items ordered by descending price. The total cost of parts
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Component Cost (USD)

Mini PC 50

Housing 8

Goose-neck 6

MEMS mic. board 5

USB CODEC 5

PSU 3

Cabling 3

Windshield 1

81

Table 2: Core component list & costs (as of August 2015) for prototype sensor node

excludes construction and deployment costs, but is very low for such a capable

system when compared to similar acoustic sensing nodes.

6. Software & network

The sensor nodes software & network aspects will be briefly summarized for

its initial configuration of high quality raw audio capture.

6.1. Raw audio capture

The presented sensor node continuously samples 16bit audio data at 44.1kHz.

If remote raw audio data collection is required, contiguous one minute segments

of audio are first compressed using the lossless FLAC audio encoder [35]. This

FLAC file is encrypted using 128bit Advanced Encryption Standard (AES) en-

cryption, with the AES password encrypted using the RSA public/private key-

pair encryption algorithm, resulting in a file that cannot be decrypted unless

you are in possession of the private key which only resides on the project’s cen-

tral server. The original raw audio files are removed. The encrypted files can

be stored on the device as an additional backup and removed as needed when

storage space is running low. The on-board flash storage of the mini PCs allow

for up-to 2 days of compressed and encrypted 16bit/44.1kHz audio data to be

stored. Any DSP required would be carried out prior to this stage on shorter

length audio buffers.
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6.2. Network control

In the prototype configuration, each sensor node communicates directly with

an internet connected Wi-Fi router for data transmission and sensor commu-

nication/control. The sensor node uploads audio data at 1 minute intervals.

With each of these transmissions the server can respond with a command that

the node should carry out. Examples of these commands could be a: data

flush request to clear out existing backup audio data, device reboot, manual

microphone gain adjust or software update.

7. Signal pre-processing

7.1. Frequency response compensation

The MATLAB toolbox: Scan IR [36] was used to generate the impulse re-

sponses of the reference microphone and MEMS microphone (referred to as the

device under test, DUT) using the swept sine technique. The signals were repro-

duced through a studio quality Mackie HR824 active speaker and a reference

PCB 377B02 microphone and PCB 426E01 pre-amplifier (assumed to be flat

in frequency response from 20Hz-20kHz) were used to subtract the room and

speaker coloration from the DUT’s impulse response. Reference and DUT mi-

crophones were placed at 1m from the center point of the speaker on-axis, 1.3m

from the floor. The DUT impulse response was generated from an average of 10

microphone boards, whose frequency response are overlaid in Figure 8. Maxi-

mum observed differences between MEMS response’s were calculated at 1.0dB,

with an average standard deviation between responses of 0.1dB.

As is evident in Figure 8, negligible differences were observed in frequency

response between the 10 MEMS microphones, highlighting the part-to-part con-

sistency of these devices. The peaks and troughs in sensitivity between 2-20kHz

could be partly explained by the microphone mounting conditions. The PCB

the microphone is mounted to may develop resonances that would reside in this

frequency range and result in these observed effects. The rise in response after
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Figure 8: MEMS frequency response of 10 microphones (clustered lines) showing consistency

between microphone capsules & regularized compensation filter response with corrospsonding

FIR filter response using 8192 coefficients (dashed lines)

10kHz, however, is a result of the Helmholtz resonance created by the micro-

phone’s inner chamber and PCB port [37]. This averaged response was then

used to design an inverse linear-phase FIR filter that would allow for the time-

domain filtering of any test signals captured by the DUT, compensating for the

MEMS microphone response. The inverse filter was regularized to prevent the

filter from applying extreme attenuation or amplification at the high and low

frequency ranges as can be observed in the dashed filter response line in Figure

8 at 20Hz and 20kHz. The process was adapted from [38], where a tapered

window between 0 and 1 is applied to the high and low extremes of the desired

inverse frequency response before the FIR filter is designed. The resultant 8192

coefficient filter provides a close match to the desired response at lower frequen-

cies. This can be efficiently implemented using the optimized DSP routines of

the mini PC’s Cortex A9 processor [39] providing compensation for the MEMS

microphone response in real-time, allowing for the unbiased, in-situ calculation

of dBA levels. This regularization process also ensures no sub-sonic frequency

content is unnecessarily amplified, improving the systems overall signal to noise
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ratio. However, the filter gain applied at frequencies between 20-400Hz may

serve to increase the overall noise floor of the system, which will be revealed

when the self generated noise is quantified in Section 8.1.

7.2. Calibration

The DUT was mounted directly beside the calibrated reference SLM micro-

phone, shown in Figure 9. The devices were positioned at a height of 1.3m and

at a distance of 1m on-axis from the center point of the speaker.

Figure 9: DUT (top) and SLM (bottom) microphones mounted

The distance between the center of each microphone capsule is 20mm, which

was found to produce negligible (<0.1dBA) variations in level response when the

SLM microphone’s position was shifted to match that of the DUT. The output

sound pressure level in dBA from the DUT is calculated from the A weighting

filtered sample values, which represent the AC voltage produced when presented

with the calibration signal of a 1kHz sine wave at 94dBA. An offset adjustment

is then applied in order to match the 94dBA SPL input level. Figure 10 shows

the processes required to generate the calibrated SPL output from the DUT.

8. Measurements

In order to determine the proposed device’s ability to generate type 2 sound

pressure level (SPL) data, the device was subjected to a subset of the IEC 61672-

3 [40] acoustical test procedures, which describe the international standards for

periodic testing of SLMs. IEC 61672-1 [17] provides the criteria for determining

a complete SLM’s ability to act as a type 1 or 2 device, including its directivity,
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Figure 10: Block diagram of sensor’s SLM functionality

which will be affected by the device and microphone housing. This extended

set of tests will be performed on the final prototype sensor device in a more

advanced stage of its development.

In the following set of measurements the SLM output (Larson Davis 831 -

calibrated at the beginning of each measurement stage using the type 1 Larson

Davis CAL200) will be used as a reference for comparison to the DUT readings

to assess its ability to produce type 2 data. As the SLM is a type 1 certified

device, it has its own set of inaccuracies associated with it. It has met the type

1 specifications within the defined tolerance bounds for that standard, thus for

the DUT to meet the type 2 specifications, the type 1 tolerance bounds must be

factored into the DUT assessment. For example, if the type 2 tolerance bounds

for a particular measurement response are ±2.0dB with the corresponding type

1 bounds at ±1.0dB, the adjusted acceptable bounds for the type 2 class in this

instance are ±1.0dB (type 2 tolerance range of 4dB minus the type 1 range of

2dB) when using the SLM as the reference device. These will be referred to

as the “adjusted tolerances”. All of the following output values were generated

from an average of 4 repeat measurements, where none of the test equipment was

moved or altered. No discernible variations (<0.1dB) in output were observed

between the individual measurements before averaging.

Measurements were conducted under low level (<20dBA), fully anechoic
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conditions at the Cooper Union, Vibration and Acoustics Laboratory 2. The

atmospheric conditions in the anechoic chamber were measured at the beginning

and end of the measurement process (≈2 hrs), and varied from 22-24◦C in air

temperature and 50-55 %RH in relative humidity.

8.1. Self generated noise

The DUT’s self generated noise (IEC 61672-1/5.7) was measured under low

level, fully anechoic conditions, with all noise generating test equipment located

outside of the chamber. Throughout the duration of the 60s measurement pe-

riod, the reference SLM logged an average SPL of 22.5dBA, close to its lower

limit of 19dBA. The self generated noise of the DUT was measured at 29.9dBA

(max. 30.1dBA, min 29.7dBA, std. 0.1dBA). The dynamic range was then cal-

culated using the manufacturer quoted acoustic overload point of the MEMS

microphone. This results in an effective dynamic range of 88.1dBA, with an

acoustic overload point of 118dBA. The signal to noise ratio (94dBA @ 1kHz)

of the system was measured at 64.1dBA (max. 64.9dBA, min 63.7dBA, std.

0.3dBA). The 29.9dBA noise floor of the system could be partly attributed to

the frequency response compensation filter outlined in Section 7.1. The filter

gain at low frequencies brings up the noise floor of the system due to the low

frequency roll-off of the analog MEMS microphone. The use of a MEMS mi-

crophone with a closer to flat response should serve to mitigate this problem as

there will be less reliance on the need to compensate for reduced sensitivity at

low frequencies.

The self generated noise value determines the minimum SPL the system

can reliably detect. For an urban acoustic sensor in the relatively loud condi-

tions of NYC this level is well below even a quiet suburban setting [41]. The

World Health Organization (WHO) night noise guidelines for Europe [42] state

that outdoor levels of 30dBA show no observed health effects on humans. The

2http://www.cooper.edu/engineering/facilities/mechanical-engineering/

vibration-and-acoustics
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dynamic range value calculated is more than adequate for the acoustic measure-

ment of urban sound environments.

The high end category 1 sensors discussed in Section 2 typically exhibit self

generated noise levels of around 20dBA with dynamic ranges of around 115dBA

common place. Category 3 devices however have been shown to perform far

worse than the presented system with dynamic ranges of around 50dBA.

8.2. Acoustical signal tests of a frequency weighting

To test the DUT’s ability to produce accurate dBA output for different

frequencies (IEC 61672-1, 5.5), it was mounted as in Section 7.2 and subjected

to a test signal comprised of 9 steady state 20s sine waves, separated with 5

seconds of silence at octave frequencies from 31.5Hz to 8kHz. Table 3 shows the

mean dBA response from the reference SLM, the DUT, the difference between

these two and the adjusted tolerance limits for type 2 devices as discussed at

the beginning of Section 8. Standard deviations of the DUT measurements were

<0.1dBA at all frequencies.

Freq. (Hz) DUT Ref. ∆ Adj. tol.

31.5 44.8 45.2 0.4* ± 1.5

63 63.6 63.7 0.1* ± 1.0

125 76.6 76.2 0.4* ± 0.5

250 85.3 84.9 0.4* ± 0.5

500 90.2 89.9 0.3* ± 0.5

1k 93.9 94.0 0.1* ± 0.3

2k 93.6 94.2 0.6* ± 1.0

4k 94.1 93.3 0.8* ± 2.0

8k 93.2 90.6 2.6* ± 3.0

pink 79.9 80.0 0.1 N/A

white 87.5 88.0 0.5 N/A

Table 3: Acoustical signal tests in mean dBA, varying frequency (* indicates IEC61672-1

criteria met)

The DUT met all of the adjusted type 2 criteria for dBA frequency weightings

when compared to the type 1 SLM. In addition, the response of the DUT and

SLM were compared for a 20s, continuous level pink and white noise signal,

showing a maximum difference in response of 0.5dBA.
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8.3. Long-term stability

In order to test the long term stability of the DUT, it was subjected to a

30min 1kHz sine wave at 94dBA. The measured difference between the dBA

reading at the beginning and end of this period must be within the type 2

tolerance of ±0.2dBA stated in IEC 61672-1, 5.14. The DUT met this criteria,

with an observed difference of 0.07dBA with mean and standard deviation

values throughout the measurement period of <0.1dBA.

8.4. Level linearity

The DUT was subjected to sine waves, linearly increasing up to 94dBA

in level to test for the devices linear response to varying SPL’s at different

frequencies (31.5Hz - 8kHz in octave increments). This was carried out using an

acoustical signal under anechoic conditions to test the entire systems response,

as opposed to introducing an electrical signal directly into the pre-amp as per

IEC 61672-1, 5.6.
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Figure 11: Linear level response of DUT vs. SLM to 1kHz sine wave upto 94dBA showing

adjusted type 2 tolerance point.

For illustration, the vertical dashed line in Figure 11 shows the point at

which the DUT meets the adjusted type 2 tolerance level (±0.6dB) for a 1kHz
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Duration (ms) IEC61672 ∆ DUT ∆ Tol.

1000 0.0 0.0* ± 1.0

500 -0.1 0.0* ± 1.0

200 -1.0 0.0* ± 1.0

100 -2.6 -2.0* ± 1.0

50 -4.8 -4.0* +1.0;-1.5

20 -8.3 -7.9* +1.0;-2.0

10 -11.1 -10.9* +1.0;-2.0

5 -14.1 -14.0* +1.0;-2.5

2 -18.0 -18.4* +1.0;-2.5

1 -21.0 -21.9* +1.0;-3.0

0.5 -24.0 -25.7* +1.0;-4.0

0.25 -27.0 -30.8* +1.5;-5.0

Table 4: Toneburst tests at 4kHz, varying duration (* indicates IEC61672-1, 5.9 type 2 criteria

met)

sinusoidal signal. The DUT can effectively operate within type 2 level linearity

tolerances above 40dBA on average for frequencies ranging from 31.5Hz - 8kHz.

This lower limit can be reduced through the use of a lower noise microphone

and pre-amp combination, as discussed in Section 9.2, however this lower limit

would rarely be observed in the urban sound environment. The DUT was also

subjected to a linearly increasing pink and white noise signal, where the type 2

lower limit was observed at 37.2dBA and 36.6dBA respectively, highlighting

the device’s broadband linear response to varying urban SPLs.

8.5. Toneburst response

To test the DUT’s response to transient SPLs, it was subjected to 4kHz

sinusoidal tonebursts, varying in duration from 1000ms down to 0.25ms. IEC

61672-1, 5.9 defines tolerance limits in terms of dBA readings relative to the

steady state 4kHz reading for type 2 devices. As these are relative measurements

and do not rely on the use of the SLM as a reference, the type 2 tolerance limits

as documented in IEC 61672-1 will be used.

As shown in Table 4, the DUT met all IEC 61672-1, 5.9 criteria for 4kHz

toneburst response.

26



8.6. Urban audio reproduction

To further assess the DUT’s ability to capture meaningful SPL data, a 15min

urban audio recording was replayed a total of 4 times under anechoic conditions

with the SLM and DUT microphone mounted directly adjacent to each other on-

axis to the speaker. One of the more eventful samples of this time history data

collected from the DUT and SLM is shown in Figure 12. It contains numerous

impulsive events such as door closures and banging sounds.
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Figure 12: Sample of DUT vs. SLM time history SPL values of urban audio recording

reproduced under anechoic conditions

As can be seen in Figure 12, the DUT closely follows the measurements

made by the type 1 SLM. Correlation analysis was carried out on the resultant

averaged SPL time histories from the SLM and DUT. The correlation coefficient

(R2) was calculated between the entire dBA (fast time weighting) time history

for each device. The total R2 value for this 15min urban signal was 0.9723

(p ≤ 0.0001). The mean difference between the SLM and DUT time history

values was 0.4dB, with a standard deviation of 0.1dBA, minimum vales of

0.1dBA and maximum values of 1.8dBA.

It seems that the MEMS microphone system slightly over-estimates the dBA

values on the rise portion of transient sound events and slightly under-estimates
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on the falling edge of these. This may be due to the fact that the DUT samples

more frequently than the SLM resulting in this ”over/under shooting” when

measuring transient events.

9. Future work

9.1. Further measurements

The full IEC 61672-1 standard includes specifications for parameters includ-

ing: device directivity, high level thresholds and environmental variations, which

require the full housing of the device to be incorporated. The final prototype

will be tested against the extended set of requirements, including a long term

exterior comparison against a type 1 SLM. Other factors such as the location of

the sensor will be investigated as the majority of potential deployment locations

are in close proximity to building facades. The resilience of these MEMS mi-

crophones to the varying environmental conditions of NYC is a critical aspect

of this research. Further environmental testing is needed to quantify the effects

of temperature and humidity on the devices response. Measurements will be

carried out using equipment supplied by the Brookhaven National Laborato-

ries, Biological, Environmental & Climate Sciences Department 3 to test sensor

functionality at extreme temperatures and humidities ranging from -20◦C to

+50◦C and 25% RH to 100% RH. This will allow for the determination of sen-

sitivity and frequency response variation under these varying conditions in a

controlled environment.

9.2. Hardware development

The high level RFI conditions in the vicinity of the sensor node and noisy

low-cost power supply rely on a microphone solution with adequate RF shielding

and a high power supply rejection ratio (PSRR). A digital MEMS microphone

solution ensures that both of these external influences are no longer an issue

3http://www0.bnl.gov/ebnn/becs/
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when it comes to the gathering of high quality acoustic urban data. Noise

observed on the output from the analog MEMS board is caused in part by par-

asitic noise from the power supply unit (PSU). This can cause measurement

inaccuracies at particular frequencies where the noise is prevalent. The next

iteration of the sensor’s microphone solution will be an entirely digital design,

utilizing a digital MEMS microphone (includes a built in ADC) and a USB

audio CODEC enabling it to connect directly to the sensors computing device.

The vastly improved power supply rejection ratio (PSRR) values and reduced

EM/RF interference of the digital MEMS microphones over their analog coun-

terparts should result in a much lower noise floor and an increase in dynamic

range. The elimination of this noise will also result in an improved ability to

capture clean audio signals for further in-situ processing and analysis.

The microphones non standard form factor is also worth revising. If a MEMS

microphone could be built onto a circular 1/2inch PCB, the device could be

calibrated using a standard 1/2inch acoustic calibrator making the calibration

process much easier and potentially more accurate across multiple sensor nodes.

Battery powered sensor node solutions will also be investigated including

power mode cycling and adaptation for periods of low acoustic activity.

9.3. Automatic sound source identification

The sensor presented in this article allows for the accurate, continuous mon-

itoring of sound levels across a city. Whilst the gathering of accurate SPL data

in-situ is crucial to the monitoring of noise in smart cities, identifying the source

of these noise events is of great importance. The sensor’s powerful processing

unit means there is the capability of performing additional analysis of the au-

dio signal. In tandem with the sensor development, considerable efforts have

been employed on machine listening algorithms for the automatic identification

of urban sound sources [43, 44]. One of the key advantages of running these

classification models directly on the sensing device is that there is no need to

transmit audio data to a centralized server for further analysis, in this way

abating possible security and privacy concerns related to the recording of audio
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data. However, porting these models to the device presents a challenge due

to the models’ high computational complexity. To this end, future work will

involve research into model compression [45], which can be used to obtain the

performance of deep learning architectures using shallow ones which require less

computational resources.

10. Conclusion

An advanced and accurate, low-cost sensor network has been presented.

Based on this preliminary testing phase including the frequency compensation

procedures, our analog MEMS microphone solution can produce accurate SPL

data of high quality. Its adherence to the type 2 specifications for the tests

undertaken is promising for its future use in a low-cost environmental acoustic

sensor. The main limiting factor of its noise floor means it cannot effectively

operate in ambient conditions of <30dBA, or at type 2 accuracies at levels

<40dBA, however, this level would rarely be observed in the urban sound envi-

ronment of NYC. The capabilities of this solution allow it to generate real-time

acoustic data at or above the type 2 level. An accurate source of data from a

reliable and low-cost sensor network is the cornerstone of any effective cyber-

physical system for noise monitoring. With city agencies such as the NYC DEP

relying on a minimum of type 2 level acoustic data, this solution can provide

a reliable stream of data to inform and effectively prioritize existing noise en-

forcement procedures.
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[25] Kivelä I, Gao C, Luomala J, Ihalainen J, Hakala I. Design of net-

worked low-cost wireless noise measurement sensors. Sensors & Transducers

2011;10:171.

[26] Hard Kernel ODROID-C1+. 2015;URL: http://www.hardkernel.com/

main/products/prdt_info.php?g_code=G143703355573.

[27] BeagleBone Black. 2015;URL: http://beagleboard.org/black.

33

http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/NoiseInstrumentation/NoiseMonitoringTerminalFamily
http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/NoiseInstrumentation/NoiseMonitoringTerminalFamily
http://www.bksv.com/Products/EnvironmentManagementSolutions/UrbanEnvironmentManagement/NoiseInstrumentation/NoiseMonitoringTerminalFamily
http://01db.acoemgroup.com/catalog/01dB-OPER-Noise-measurement-and-monitoring-station
http://01db.acoemgroup.com/catalog/01dB-OPER-Noise-measurement-and-monitoring-station
http://www.larsondavis.com/Products/NoiseMonitoringSystems/PermanentNoiseMonitoringSystem
http://www.larsondavis.com/Products/NoiseMonitoringSystems/PermanentNoiseMonitoringSystem
http://www.libelium.com/development/waspmote/documentation/smart-cities-board-technical-guide/
http://www.libelium.com/development/waspmote/documentation/smart-cities-board-technical-guide/
http://www.libelium.com/development/waspmote/documentation/smart-cities-board-technical-guide/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143703355573
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143703355573
http://beagleboard.org/black


[28] Raspberry Pi 2 Model B. 2015;URL: http://www.alliedelec.com/

raspberry-pi-raspberry-pi-2-model-b/70465426/.

[29] Van Renterghem T, Thomas P, Dominguez F, Dauwe S, Touhafi A, Dhoedt

B, et al. On the ability of consumer electronics microphones for environmen-

tal noise monitoring. Journal of Environmental Monitoring 2011;13(3):544–

52.

[30] Barham R, Goldsmith M, Chan M, Simmons D, Trowsdale L, Bull S. Devel-

opment and performance of a multi-point distributed environmental noise

measurement system using mems microphones. In: Proceedings of the 8th

European conference on noise control (Euronoise 2009). 2009,.

[31] Barham R, Chan M, Cand M. Practical experience in noise mapping with

a MEMS microphone based distributed noise measurement system. In:

39th International Congress and Exposition on Noise Control Engineering

(Internoise 2010). 2010,.

[32] Scheeper P, Nordstrand B, Gullv J, Liu B, Clausen T, Midjord L, et al.

A new measurement microphone based on MEMS technology. Journal of

Microelectromechanical Systems 2003;12(6):880–91.

[33] Mydlarz C, Nacach S, Rosenthal E, Temple M, Park T, Roginska A. The

implementation of mems microphones for urban sound sensing. In: AES

137th Convention, Los Angeles, USA. 2014,.

[34] Inc. HE; 2003;Thermal management - heat dissipation in electrical enclo-

sures. URL: http://www.hoffmanonline.com/stream_document.aspx?

rRID=233309&pRID=162533.

[35] FLAC - Free Lossless Audio Codec. 2015;URL: https://xiph.org/flac/.

[36] Boren B, Roginska A. Multichannel impulse response measurement in mat-

lab. In: Audio Engineering Society Convention 131. Audio Engineering

Society; 2011,.

34

http://www.alliedelec.com/raspberry-pi-raspberry-pi-2-model-b/70465426/
http://www.alliedelec.com/raspberry-pi-raspberry-pi-2-model-b/70465426/
http://www.hoffmanonline.com/stream_document.aspx?rRID=233309&pRID=162533
http://www.hoffmanonline.com/stream_document.aspx?rRID=233309&pRID=162533
https://xiph.org/flac/


[37] Weigold J, Brosnihan T, Bergeron J, Zhang X. A MEMS condenser mi-

crophone for consumer applications. In: MEMS 2006 Istanbul 19th IEEE

International Conference. Istanbul, Turkey; 2006, p. 86 –9.

[38] Bouchard M, Norcross SG, Soulodre GA. Inverse filtering design using a

minimal-phase target function from regularization. In: Audio Engineering

Society Convention 121. 2006,URL: http://www.aes.org/e-lib/browse.

cfm?elib=13763.

[39] ARM R© NEONTM general-purpose SIMD engine. 2015;URL: http://www.

arm.com/products/processors/technologies/neon.php.

[40] Electroacoustics - Sound level meters - Part 3: Periodic Tests, International

Standard IEC 61672-3:2013. Tech. Rep.; International Electrotechnical

Commission; Geneva, Switzerland; 2013.

[41] US Office of Noise Abatement . Information on levels of environmental noise

requisite to protect public health and welfare with an adequate margin of

safety 1974;74(4).

[42] WHO ; 2009;Night noise guidelines for europe, available from:

http://www.euro.who.int/document/e92845.pdf. URL: http://www.

euro.who.int/document/e92845.pdf.

[43] Salamon J, Bello JP. Unsupervised feature learning for urban sound clas-

sification. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing

(ICASSP). Brisbane, Australia; 2015,.

[44] Salamon J, Bello JP. Feature learning with deep scattering for urban sound

analysis. In: 2015 European Signal Processing Conference. Nice, France;

2015,.

[45] Ba J, Caruana R. Do deep nets really need to be deep? In: Ghahra-

mani Z, Welling M, Cortes C, Lawrence N, Weinberger K, editors.

35

http://www.aes.org/e-lib/browse.cfm?elib=13763
http://www.aes.org/e-lib/browse.cfm?elib=13763
http://www.arm.com/products/processors/technologies/neon.php
http://www.arm.com/products/processors/technologies/neon.php
http://www.euro.who.int/document/e92845.pdf
http://www.euro.who.int/document/e92845.pdf


Advances in Neural Information Processing Systems 27. Curran Asso-

ciates, Inc.; 2014, p. 2654–62. URL: http://papers.nips.cc/paper/

5484-do-deep-nets-really-need-to-be-deep.pdf.

36

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf

	Introduction 
	New York City noise
	Type certification and IEC 61672 

	A high quality & scalable acoustic sensor network 
	Category 1 - Dedicated monitoring stations
	Category 2 - Moderately scalable sensor network
	Category 3 - Low-cost sensor network
	What makes a high quality & truly scalable acoustic sensor network?

	Applications
	Summary of contributions
	Hardware 
	Computing core
	MEMS microphones 
	Microphone mount
	Power supply considerations
	Form factor & cost of parts

	Software & network
	Raw audio capture
	Network control

	Signal pre-processing
	Frequency response compensation 
	Calibration 

	Measurements 
	Self generated noise 
	Acoustical signal tests of a frequency weighting 
	Long-term stability 
	Level linearity 
	Toneburst response 
	Urban audio reproduction 

	Future work 
	Further measurements
	Hardware development
	Automatic sound source identification 

	Conclusion
	Acknowledgments

