
PUMP UP THE JAMS: V0.2 AND BEYOND

Brian McFee1,2,*, Eric J. Humphrey4, Oriol Nieto5, Justin Salamon1,3,
Rachel Bittner1, Jon Forsyth1, and Juan P. Bello1

1Music and Audio Research Laboratory, New York University
2Center for Data Science, New York University

3Center for Urban Science and Progress, New York University
4MuseAmi, Inc.
5Pandora, Inc.

ABSTRACT

This document describes the changes to the JSON
Annotated Music Specification (JAMS) format and
implementation between v0.1 and v0.2.

1. INTRODUCTION

The JSON Annotated Music Specification (JAMS)
format was proposed by Humphrey et al. [3] as a
mechanism to serialize structured annotations for
musical content. Since the initial publication of
the JAMS specification, we (the developers) have
learned several lessons in building music informa-
tion retrieval infrastructure on top of the existing
framework. Consequently, we have revised the spec-
ification and implementation in various ways to bet-
ter support a modern and extensible workflow. The
purpose of this document is to explain the changes
in JAMS following the first publication, describe
their underlying motivation, and demonstrate how
to effectively apply the current (v0.2.0) implemen-
tation.

Throughout this document, the previous specifi-
cation of JAMS as described by Humphrey et al. [3]
will be referred to as JAMS-0.1, while the current
specification will be referred to as JAMS-0.2.

2. JAMS SPECIFICATION

In this section, we highlight the changes to the JAMS
schema definition(s). Since these changes apply to

∗Please direct correspondence to brian.mcfee@nyu.edu

© Brian McFee, Eric J. Humphrey, Oriol Nieto,
Justin Salamon, Rachel M. Bittner, Jon Forsyth, Juan P. Bello.
Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Brian McFee,
Eric J. Humphrey, Oriol Nieto, Justin Salamon, Rachel M. Bit-
tner, Jon Forsyth, Juan P. Bello. “Pump up the JAMS: v0.2 and
beyond”, 16th International Society for Music Information Re-
trieval Conference, 2015.

the file structure definition itself, they are indepen-
dent of the software implementation used to parse
or generate JAMS files. The software implementa-
tion of JAMS is available at https://github.com/
marl/jams.

2.1 Unified observation types

In JAMS-0.1, there are four basic data types:

• observation,

• event,

• range, and

• time series.

The observation type is used to encode a fixed ob-
served quantity, such as as chord label or seman-
tic tag, as well as a quantitative measure of confi-
dence in the value. 1 The latter three types define
different ways of encoding the time index of an ob-
servation. Event is used for observations with no
temporal duration (such as beats or onsets); range
is used for observations that span a fixed portion of
time (such as chords or segments); and time series
is used to encode temporally continuous observa-
tions, such as melodic contours.

These three distinct views lead to efficient, com-
pact representations, but can be difficult to work
with in practice. Different tasks generally use dif-
ferent time index types, so the practitioner must
both be aware of which index is used for any given
task, and write code to handle it accordingly. More-
over, it becomes non-trivial to temporally align an-
notations across different tasks, since they must
first be mapped into a common representation.

JAMS-0.2 simplifies this by reducing all observa-
tion types to a single format: regardless of task,
each observation consists of a 4-tuple (time, du-
ration, value, confidence). The time and duration

1 A secondary value field is also provided, but we ignore it
here for expository purposes.

fields are constrained by the schema to be non-
negative numbers. 2 By default, this simulates the
range type of JAMS-0.1, but taking duration= 0 re-
covers the event type as well, with a small amount
of redundancy.

The time series type of JAMS-0.1 can be viewed
as an efficiently coded, dense sequence of range
observations with implicit durations. Recall that in
JAMS-0.1, each Annotation object contains a list of
observations in its data field. For high-frequency
observations — such as melodic contours, sampled
at 10Hz or greater — encoding a 4-tuple for each
sample would be inefficient, due to redundantly list-
ing the keys time, value, duration, confidence. JAMS-
0.2 circumvents this by allowing a distinction be-
tween sparse and dense observation lists. Note
that having standardized the observation format,
the Annotation’s data field can be interpreted as
an n × 4 table, which may be encoded in either
a row-major (sparse) or column-major (dense) for-
mat. While the column-major format is generally
more spatially efficient, the row-major format is more
human-legible, and for most tasks, the difference in
efficiency is negligible.

Standardizing the observation format both sim-
plifies upstream code to interact with JAMS objects,
and generalizes the previous definitions. (For in-
stance, time series now have explicit durations/sam-
pling rates, and gaps in observations are now per-
mitted.) The one thing that we lose in this process
is the notion of time-independent annotations, such
as tag, genre, and mood in JAMS-0.1. This is be-
cause all observations in JAMS-0.2 are required to
have a time and (potentially 0) duration. However,
we argue that this is an advantage for three rea-
sons. First, it is possible to have full-track obser-
vations by setting time= 0 and duration to the full
track duration, so no functionality is lost. Second,
in reality, every observation type may vary over time,
so the schema should support this explicitly. Fi-
nally, it forces the annotator to be explicit about
the valid timing of an observation, and facilitates
partial annotation (see section 4).

2.2 Task- vs. Annotation-major layout

As illustrated in fig. 1, JAMS-0.1 took a task-major
approach to structuring annotations. A collection
of supported tasks was defined within the JAMS-
0.1 schema, such as tag, genre, chord, key, melody,
etc. Annotations of a particular task would then be
accessed by indexing the array of annotations cor-
responding to that task, e.g.:

2 The value and confidence fields are left unconstrained at this
point, but are defined subsequently depending on the names-
pace as defined in section 2.2.

{
"file_metadata" : {

" art ist " : "The Beatles" ,
"duration" : { "value" : 260.627 },
" jams_version" : "0.0.1" ,
" t i t l e " : "01_−_Come_Together"

},
"beat" : [

{
"annotation_metadata" : { . . . } ,
"data" : [

{
" label " : { "value" : 1 }, "time" : { "value" : 1.196 }

},
{

" label " : { "value" : 2 }, "time" : { "value" : 1.904 }
},
. . .

]
}

] ,
"chord" : [

{
"annotation_metadata" : { . . . } ,
"data" : [

{
" start " : { "value" : 0.0 },
"end" : { "value" : 1.172266 },
" label " : { "value" : "N" }

},
{

" start " : { "value" : 1.172266 },
"end" : { "value" : 12.585238 },
" label " : { "value" : "D:min" }

},
. . .

]
}

] ,
"key" : [

{
"annotation_metadata" : { . . . } ,
"data" : [

{
" start " : { "value" : 0.0 },
"end" : { "value" : 1.01 },
" label " : { "value" : "Silence" }

},
{

" start " : { "value" : 1.01 },
"end" : { "value" : 70.673 },
" label " : { "value" : "Key\ tD:minor" }

},
. . .

]
}

] ,
"segment" : [

{
"annotation_metadata" : { . . . } ,
"data" : [

{
" start " : { "value" : 0.0 },
"end" : { "value" : 1.0 },
" label " : { "value" : " silence" }

},
{

" start " : { "value" : 1.0 },
"end" : { "value" : 35.861 },
" label " : { "value" : " intro / verse" }

},
. . .

]
}

]
}

Figure 1. Example of a JAMS-0.1 object. The ex-
ample has been abridged to highlight schematic
changes in JAMS-0.2.

{
"file_metadata" : {

" art ist " : "The Beatles" ,
"duration" : 260.627,
" identif iers " : {},
" jams_version" : "0.2.0" ,
"release" : " " ,
" t i t l e " : "01_−_Come_Together"

},
"sandbox" : {},
"annotations" : [

{
"namespace" : "beat" ,
"annotation_metadata" : { . . . } ,
"sandbox" : {},
"data" : [

{
"time" : 1.196, "duration" : 0.0,
"value" : 1.0, "confidence" : 1.0

},
{

"time" : 1.904, "duration" : 0.0,
"value" : 2.0, "confidence" : 1.0

},
. . .

]
} ,
{

"namespace" : "chord" ,
"annotation_metadata" : { . . . } ,
"sandbox" : {},
"data" : [

{
"time" : 0.0, "duration" : 1.172266,
"value" : "N" , "confidence" : 1.0

},
{

"time" : 1.172266, "duration" : 11.412972,
"value" : "D:min" , "confidence" : 1.0

},
. . .

]
} ,
{

"namespace" : "key_mode" ,
"annotation_metadata" : { . . . } ,
"sandbox" : {},
"data" : [

{
"time" : 1.01, "duration" : 69.663,
"value" : "D:minor" , "confidence" : 1.0

},
. . .

]
} ,
{

"namespace" : "segment_open" ,
"annotation_metadata" : { . . . } ,
"sandbox" : {},
"data" : [

{
"time" : 0.0, "duration" : 1.0,
"value" : " silence" , "confidence" : 1.0

},
{

"time" : 1.0, "duration" : 34.861,
"value" : " intro / verse" , "confidence" : 1.0

}
. . .

]
}

]
}

Figure 2. The contents of fig. 1 in JAMS-0.2 for-
mat.

jams_object.beat[0]

This structure is conceptually simple and easy
to work with, but it poses several practical limita-
tions. First, it requires that all tasks be specified
a priori within the JAMS schema. Consequently,
each time a new task is introduced in the future,
the core JAMS schema must be modified to accom-
modate it. This is clearly undesirable, as it could
lead to fragmentation of the JAMS specification if
(when) different groups decide to extend the task
definitions in one direction or another.

Second, it provides no means of distinguishing
between different variations of a task. As a simple
example, take the case of tags. Different data sets
are annotated using different vocabularies, which
may be closed (e.g., GTZAN [?] or CAL500 [?]) or
open (e.g., last.fm). This implies that the validity
of a tag annotation depends upon the target vo-
cabulary, which is not explicitly coded within the
schema. (Indeed, an exhaustive coding of all tag
vocabularies within a fixed schema is impossible.)
As a more nuanced example, chord annotations can
be drawn from different vocabularies (e.g., includ-
ing or suppressing extensions), or even radically
different annotation styles, such as the pop-style
annotations of Isophonics [1] compared to the ro-
man numeral annotations of the Rock Corpus [2].
In these cases, it is hardly sensible to group these
variations together under a single task, since their
annotations are not directly comparable.

To resolve these issues, JAMS-0.2 adopts an an-
notation-major (rather than task-major) structure.
Instead of grouping annotations by task at the top-
level, a JAMS-0.2 object contains a single list of An-
notations. Figure 2 illustrates how the contents of
the example in fig. 1 are encoded in JAMS-0.2.

The annotation-major structure allows for the same
core schema to be retained as new tasks are intro-
duced, since there is no explicit dependence on the
task definitions. However, since all annotations are
collected in a single, anonymous data structure, we
will need a new way to distinguish between anno-
tations for different tasks. This leads us to the task
namespace abstraction.

2.3 Task namespaces

Each annotation object declares its task through a
string-valued field called namespace. A namespace
in JAMS-0.2 is simply a partial schema declaration
which defines the following properties:

• an identifier, e.g., “beat” or “tag_cal500”;

• schema declarations for the value and confi-
dence fields;

• whether data should be encoded in dense or
sparse form; and

• a brief plain-text description of the task.

The identifier is included within Annotation objects
to specify which namespace they should be vali-
dated against. The schema declarations for value
and confidence are both optional, but can be used
to impose constraints on the permissible contents
of an observation. 3

This abstraction allows for both a more general
set of supported tasks, in that there may be many
tag namespaces, and more precise task definitions
for each specific namespace. For instance, a valid
tag_cal500 annotation must have a value drawn from
the correct vocabulary, whereas a tag_open anno-
tation may contain any string in its value field; how-
ever, in both cases, the value must be a string, and
this constraint was not possible in the JAMS-0.1
schema.

With the namespace abstraction, it is possible
for observations to have arbitrarily structured value
and confidence fields. Figure 3 provides a complete
example namespace definition for mood_thayer an-
notations, in which each observed value is an or-
dered pair of numbers encoding valence and arousal
in the Thayer mood model [?].

For convenience, namespaces are grouped into
high-level task categories by their identifiers. We
stress that this grouping is merely cosmetic, and
there is no strict underlying hierarchy of tasks. Ta-
ble 1 lists the namespaces supported in JAMS v0.2.0.

Finally, namespaces are defined externally to the
core schema, and new namespaces can be imported
dynamically with no modifications to the JAMS im-
plementation itself. This makes it possible to de-
velop and share custom annotation specifications.

3. IMPLEMENTATION

To support the schema changes described in the
previous section, the JAMS python implementation
was dramatically revised in 0.2.

3.1 Search

As described in 2.3, all annotation objects are now
collected in a single list at the top level. This presents
a difficulty for users: in the presence of multiple
annotations spanning various tasks, how can one
efficiently select a specific annotation? A common
use-case might be selecting only the annotations

3 The term namespace was chosen to connote that the value
and confidence fields keep the same name in different tasks,
but their interpretation varies according to namespace. This is
analogous to the notion of namespace encapsulations in soft-
ware engineering.

Table 1. Namespaces supported in JAMS v0.2.0.

Task group Namespace

Beat beat
beat_position

Chord chord
chord_harte
chord_roman

Key key_mode

Lyrics lyrics

Mood mood_thayer

Onset onset

Pattern pattern_jku

Pitch pitch_class
pitch_hz
pitch_midi

Segment segment_open
segment_salami_function
segment_salami_upper
segment_salami_lower
segment_salami_tut

Tag tag_cal10k
tag_cal500
tag_gtzan
tag_medleydb_instruments
tag_open

Tempo tempo

mood_thayer.json

{"mood_thayer":
{

"value": {
"type": "array",
"items": {"type": "number"},
"minItems": 2,
"maxItems": 2

},
"dense": false,
"description": "Time-varying

emotional measurements as
ordered pairs of (valence,
arousal)"

}
}

Figure 3. An example namespace definition file for
mood_thayer. Each observed value is an array of
exactly two numbers, and observations are packed
sparsely. No constraints are placed upon the confi-
dence field.

matching a given task, e.g., finding all beat annota-
tions. More advanced examples are also possible,
such as filtering by annotator, curator, or arbitrary
sandbox entries.

To address this problem, we introduced the
JAMS.search() method. This method acts as a fil-
ter over the list of annotations, and performs a re-
cursive descent over the object hierarchy to find
matching fields. For example, to find all the beat
annotations, one simply needs to execute the fol-
lowing:

>>> jam = jams.load(’filename.jams’)
>>> anns = jam.search(namespace=’beat’)

The resulting anns object is a (possibly empty) col-
lection of annotation objects matching the query.
Multiple simultaneous query conditions are possi-
ble, and are interpreted disjunctively. The follow-
ing example finds all annotations that have either
beat as a namespace, or isophonics as a corpus:

>>> anns = jam.search(namespace=’beat’,
... corpus=’isophonics’)

In fact, search results are provided as a list-
like object that again implements search(), so that
conjunctions are supported by successive queries.
To find annotations that match both the namespace
and corpus fields, one could execute the following:

>>> anns = jam.search(namespace=’beat’)\
... .search(corpus=’isophonics’)

3.2 Data frames

The JAMS-0.1 implementation provided a direct ob-
ject mapping between the JSON representation and
its instantiation in Python. Consequently, the code
to access the elements of a JAMS object is a simple
traversal of the data structure, e.g.:

>>> ann = jam.beat[0]
>>> first_beat = ann.data[0].time

One advantage of this approach is that it would
yield nearly identical code in any other language
(such as JavaScript).

However, in practice, working with data in this
format can be somewhat cumbersome. For exam-
ple, evaluation scripts (such as mir_eval [5]) typ-
ically expect data in an array format. This can be
accomplished with some minor contortion by iter-
ating over the observations:

>>> all_beats = [o.time for o in ann.data]

More generally, certain common operations like
thresholding or label manipulation are simply eas-
ier with natively array-oriented representations.

Since JAMS-0.2 encodes all annotation data in
a table-friendly format, we instead opted to pro-
vide a table-interface in the Python implementa-
tion. This is accomplished by translating annota-
tion data fields into a pandas data frame object [4]
upon construction. The choice of using a data
frame (rather than a numpy array) carries several
advantages:

• labeled fields;

• heterogeneous data types;

• advanced query operations (join, merge, etc);

• missing value support; and

• temporal indexing.

Accessing individual observations in JAMS-0.2
looks nearly identical to JAMS-0.1 (once an anno-
tation object has been selected):

>>> ann = jam.search(namespace=’beat’)[0]
>>> first_beat = ann.data.time[0]

This would also work:
>>> first_beat = ann.data.loc[0].time

>>> all_beats = ann.data.time

However, the ann.data object itself can now be op-
erated upon as an array or data frame.

JAMS data frame objects interpret all time and
duration fields as timedelta types. In addi-
tion to facilitating semantic validation — time

and duration fields are enforced to contain non-
negative values — this enables pandas to efficiently
align and resample multiple annotations with non-
uniform timings. Upon serialization, these values
are converted back to raw floating point represen-
tations in units of seconds.

3.3 Dynamic namespaces

As described in section 2, JAMS-0.2 adopts an ex-
tensible task framework. In the Python implemen-
tation, this is supported by dynamic construction
of the full schema at run-time. Each namespace
is defined in a self-contained file (e.g., fig. 3), and
when the JAMS library is imported, it searches for
all namespace definitions within the distribution,
adding each to a dictionary of available names-
paces.

This dynamic namespace implementation carries
two benefits. First, it decouples the namespace
definitions from the core schema, allowing names-
paces to evolve over time without changing the
core structure. Second, it allows practitioners to
define and import namespaces for their own tasks
without modifying the JAMS library. Consequently,
this should ameliorate the need to fork and mod-
ify the JAMS implementation, thus preventing frag-
mentation of the codebase.

New namespaces can be added at runtime by the
following code fragment:

>>> import jams
>>> jams.schema.add_namespace(
... ’/path/to/my_namespace.json’)

3.4 Validation

The JAMS-0.2 namespace framework also facil-
itates task-dependent data validation via JSON
schema. This helps ensure that annotations are
not only syntactically correct, but (at least par-
tially) semantically correct. Whenever a JAMS ob-
ject is serialized or deserialized, it is run through
a schema validation which ensures that the data is
well-formed, and each observation fits the specifi-
cation of its containing namespace. We note that
this was not possible in JAMS-0.1 because the rela-
tively coarse observation types (e.g., tag) were too
broad to support precise specification of allowable
values.

Validation errors in JAMS-0.2 can be handled in
either strict or non-strict mode. In strict mode,
errors invoke an exception and interrupt the pro-
gram. In non-strict mode, errors simply issue a
warning and do not interrupt the program. Finally,
because validation can be a relatively expensive op-
eration, it can be bypassed entirely on load if the

practitioner is confident that the data has already
been validated. These different validation modes
are exemplified by the following code fragment:

With strict validation (default)
>>> jam = jams.load(’file.jams’)

With lax validation
>>> jam = jams.load(’file.jams’,
... strict=False)

With no validation
>>> jam = jams.load(’file.jams’,
... validate=False)

3.5 mir_eval integration

The mir_eval package provides reference imple-
mentations of common evaluation metrics for var-
ious tasks. Because mir_eval uses a variety of
(well-defined) flat annotation formats for its input,
JAMS-0.2 provides bindings which translate JAMS
annotations into mir_eval-format, call the appro-
priate evaluation routine, and return the resulting
dictionary of scores.

The evaluation bindings are contained in the
eval submodule, which provides a simple, consis-
tent interface to evaluators, e.g.:

Get the first beat annotation from the
reference and estimation objects
>>> ann_r = ref.search(namespace=’beat’)[0]
>>> ann_e = est.search(namespace=’beat’)[0]

Call the evaluator
>>> scores = jams.eval.beat(ann_r, ann_e)

All evaluation bindings accept two annotations
(reference and estimate), and additional keyword
arguments which can be passed through to config-
ure the evaluator. Each evaluation binding also ver-
ifies that the input annotations belong to the cor-
rect namespace(s) and pass validation.

3.6 Serialization IO

JAMS-0.1 was developed for serializing data to disk
and back, and thus assumed that all serialization
targets were filenames. JAMS-0.2 relaxes this as-
sumption, and allows serialization to open file-like
python objects as well. This is done transparently
by simply passing a file-like object to the input-
output routines instead of a filename:

>>> with open(’input.jams’) as fd:
jam = jams.load(fd)

This functionality can be useful in the context of a
web server, where the destination is not a file on
disk but an open HTTP connection to a browser.

Moreover, the JAMS IO routines now support
compressed file targets by specifying the .jamz
(i.e., JAMs Zipped) extension to the file name:

>>> jam = jams.load(’input.jamz’)

This would also work
>>> jam = jams.load(’input.jams.gz’,
... fmt=’jamz’)

The compressed JAMS format can significantly in-
crease storage efficiency at the cost of direct hu-
man legibility. In many situations, this trade-off is
acceptable.

4. FUTURE DIRECTIONS

In this section, we describe the current work in
progress and speculative features to come in future
revisions.

4.1 Namespace conversions

As shown in table 1, many of the existing names-
paces are similar enough to share common repre-
sentations and evaluation schemes, and can there-
fore be grouped into high-level categories. In some
cases, it is even possible to construct explicit map-
pings between namespaces. This can be useful for
simultaneously modeling or comparing data from
different corpora.

As concrete examples, chord_harte is a strict
subset of chord, and tag_cal500 is a strict subset
of tag_open. In these cases, the mapping is a triv-
ial substitution of the namespace identifier in the
annotation. A less trivial example can be found in
the mapping between pitch_hz and pitch_midi,
where the values must undergo a unit conversion.
Finally, one may wish to convert a chord_roman an-
notation to chord format, which requires a substan-
tial (and non-invertible) manipulation of the data.

Although complicated, implementing automatic
namespace conversion — even if it is occasionally
non-invertible — would be valuable for simplifying
modeling and evaluation of tasks across different
datasets.

4.2 Local namespaces and unstructured data

JAMS-0.2 provides functionality for local exten-
sions of the supported namespaces, but it can be
tedious to add namespace definitions manually in
each application. We therefore plan to introduce
functionality to support a local namespace reposi-
tory, in addition to the definitions which ship in the

Table 2. New namespaces planned for JAMS
v0.2.1.

Task group Namespace

Misc blob
vector

Segment multi_segment

main distribution. This repository would be spec-
ified by an environment variable or configuration
file, and reduce the amount of custom code needed
to support local extensions to the namespaces.

In addition to expanded support for local modifi-
cation, we plan to introduce three new namespaces
in 0.2.1 as listed in table 2.

The multi_segment namespace is similar to the
existing segment namespaces, except that it intro-
duces an additional level field to the values which
can be used to encode a multi-layer or hierarchical
segmentations.

The vector namespace provides values which
are arbitrary arrays of numbers. This can be use-
ful for regression problems in which the annotation
targets are vector-valued, such as collaborative fil-
ter prediction, or higher-dimensional extensions of
the Thayer mood model. The vector namespace
does not enforce that each observation’s array is
of the same length, so great care must be taken in
documenting annotations using this namespace.

The blob namespace can be used to store ar-
bitrarily structured values which don’t otherwise
fit in an existing schema. This namespace should
be viewed as a last resort to storing within JAMS.
Whenever possible, we recommend using the most
specific namespace that characterizes the annota-
tions of interest.

4.3 Partial annotations

For a variety of practical reasons, annotations fre-
quently do not span the entire duration of a track.
Ideally, annotations should therefore define the
time extent over which the annotation is valid.
While JAMS-0.2 provided some functionality to en-
code this (via the duration fields or a sandbox en-
try) it was not standardized, and no provision ex-
ists to support partial annotations of zero-duration
events.

Starting in JAMS-0.2.1, each annotation object
will also contain optional time and duration field.
By convention, if these fields are left null, then the
annotation should be assumed to span the entire
track.

5. REFERENCES

[1] Reference annotations: The Beatles,
2009. http://isophonics.net/content/
reference-annotations-beatles.

[2] Trevor De Clercq and David Temperley. A cor-
pus analysis of rock harmony. Popular Music,
30(01):47–70, 2011.

[3] Eric J Humphrey, Justin Salamon, Oriol Nieto,
Jon Forsyth, Rachel M Bittner, and Juan P Bello.
JAMS: a JSON annotated music specification for
reproducible MIR research. In International So-
ciety for Music Information Retrieval Confer-
ence, ISMIR, 2014.

[4] Wes McKinney. Data structures for statistical
computing in python. In Stéfan van der Walt and
Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 51 – 56,
2010.

[5] C. Raffel, B. McFee, E. Humphrey, J. Salamon,
O. Nieto, D. Liang, and D.P.W. Ellis. mir_eval:
a transparent implementation of common MIR
metrics. In Proceedings of the 15th Interna-
tional Society for Music Information Retrieval
Conference, ISMIR, 2014.

