
How Not to Lose Your Code,  Your Degree, ���
and Your Future Job

Justin Salamon

Center for Urban Science and Progress

New York University

February 12th, 2016



How Not To Lose Your Code���
���

(or: How To Write Good Code, Manage It, Share It, and Be Awesome)



Horror Story 1

Bob: Oh no! Someone broke into our apartment 
and stole my laptop! All of my code is gone…

Alice: I thought you kept a backup of your code 
on an external hard drive, no?

Bob: They took that too…

How Not To Lose Your Code :  Horror Stories



Horror Story 2

Bob: dammit, I’ve made some changes to my 
code and now it doesn’t work anymore

Alice: that’s ok Bob. Just revert to a version of 
the code you know worked.

Bob: ehm… version?

How Not To Lose Your Code :  Horror Stories



Horror Story 3

Bob: I was collaborating with Rob on a project, and we were 
emailing each other the latest version of the code. Over 
spring break we both worked separately, and now we don’t 
know how to merge our work!

Alice: that’s ok Bob. Just use Git to compare the two 
repositories, identify conflicting sections of the code 
and help you merge them back into one.

Bob: ehm… Git?

How Not To Lose Your Code :  Horror Stories



Horror Story 4
Ex-master student: Hey Justin, I was reading your paper from a few 
years ago , and I was wondering how exactly you normalize the data in 
Section 5?

Justin: Oh god… let me find my PhD backup drive… 
[finds drive] 

Justin: Oh god… let me find the code used for that paper on the 
drive…

[finds code]
Justin: Oh god… let me figure out which version of the code was used 
when the paper was written…
[after much suffering, figures out which version of the code was used 

and how normalization was applied. Fail averted. Luckily.]
[kicks himself for not using version control at the time]

How Not To Lose Your Code :  Horror Stories

(true!)



Version Control

Software to help keep track of changes made to files:
•  Tracks the history of your work
•  Helps you collaborate with others

•  Helps keep an online backup of your code

How Not To Lose Your Code :  Version Control



Keeping Track of History

•  How do you get back to that working version you 
had yesterday?

•  How do you get from “it’s not working” to 
understanding what went wrong?

•  How would you repeat the experiments from that 
paper (or project) you worked on last year?

How Not To Lose Your Code :  Version Control



Collaborating

With yourself:
•  Need to run same code on laptop and on CUSP server:

–  How do you get the code onto both?

–  How do verify that you have the same code on both?

With others:
•  Working on a project with classmates:

–  How do you find out when they changes something?

–  How do you merge your changes without making a mess?
–  How can you find out which of you introduced a bug, and when?

How Not To Lose Your Code :  Version Control



Version Control

A version control system:
•  Records you files’ history 
•  Shows the differences between versions

•  Handles sync between copies on different computes and 
the cloud

How Not To Lose Your Code :  Version Control



How is that Different from Dropbox?

Guarantees consistency:
•  Code needs to be exactly as written across all files
•  Files changed together can be updated together
•  Changes to a file by different people must be merged 

correctly

Keeps records:
•  Publish and replicate history reliably 
•  Interrogate past changes and find out what version you 

are looking at

How Not To Lose Your Code :  Version Control



Version Control Evolution

•  Revision Control System (RCS): 1982
–  Each file versioned independently, manual sync

•  Concurrent Versions System (CVS): 1986, 1990
–  Multiple file versioning 

–  Can only change latest version,  clumsy networking, poor support 
for binary files

•  Subversion (SVN): 2000
–  Similar to CVS but with many improvements 

–  Versioning done on server-side: local dev is tricky
–  Single point of failure (the server)

How Not To Lose Your Code :  Version Control

☺ 

☺ 

☹ 

☹ 

☹ 
☹ 



How Not To Lose Your Code :  Git



Git

•  Features:
–  Distributed version control system (DVCS)
–  Does not require a centralized server

•  But you can still have one, if you want

–  Easy local incremental development
–  No single point of failure

•  Every developer has local copy with full history of the repository

•  Drawbacks:
–  A bit of a learning curve…

•  Other DVCs
–  Mercurial (hg)
–  Bazaar (bzr)

How Not To Lose Your Code :  Git

[Torvalds, 2005]



Using Git: client-server

1.  git clone Make local copy of the repo

2.  (edit files)

3.  git commit Register your changes locally

4.  git push Share changes upstream

5.  git pull Get updates from upstream

How Not To Lose Your Code :  Git



Demo
How Not To Lose Your Code :  Git



Advanced Usage: Tags

•  Some revisions are special:
–  Initial paper submission
–  Camera ready submission

–  Public software releases

•  Tagging links semantic versions to revisions
•  Example:

•  git tag –a v1.0
•  git push origin --tags

How Not To Lose Your Code :  Git



Advanced Usage: Branches

•  What if you want to develop new features, but retain 
version control on a stable codebase?

•  Working in a branch of the source tree
•  Merge back when you’re ready

•  Especially useful for collaborations

How Not To Lose Your Code :  Git



Advanced Usage: Branches

•  Example: create a new branch
•  git checkout –b unstable
•  (edits, commits, pushes)

•  Switch to master, bug fix, switch back
•  git checkout master
•  (edits, commits, pushes)
•  git checkout unstable

•  Merge unstable back into master
•  git checkout master
•  git merge unstable

How Not To Lose Your Code :  Git

unstable



Advanced Usage: Branches
How Not To Lose Your Code :  Git



Hosting Git Online
How Not To Lose Your Code :  GitHub



GitHub
How Not To Lose Your Code :  GitHub

•  Free hosting for open source projects
–  Free organization accounts for academics

•  Social network integration
•  Extra usability tools

–  User management
–  Pull requests
–  Issue tracking, comments, wiki
–  Release management
–  Webhooks & services!

•  Portfolio for potential employers!
–  More on this later



GitHub: mir_eval
How Not To Lose Your Code :  GitHub



GitHub: mir_eval
How Not To Lose Your Code :  GitHub



GitHub: mir_eval
How Not To Lose Your Code :  GitHub



GitHub: mir_eval
How Not To Lose Your Code :  GitHub



GitHub: mir_eval
How Not To Lose Your Code :  GitHub



What About Private Repositories?
How Not To Lose Your Code :  BitBucket



What About Sensitive Code/Data?
How Not To Lose Your Code :  BitBucket

CUSP Data Facility can host Git repo’s!



What if I’m not sure?
How Not To Lose Your Code :  BitBucket

CUSP Data Facility



Git In Practice
How Not To Lose Your Code :  Git in practice



What if I’m More of a Visual Type?
How Not To Lose Your Code :  Git in practice



GitHub: Example Workflow
How Not To Lose Your Code :  Git in practice

•  Pull from GitHub
–  Either develop or master branch, depends…

•  Develop locally
–  First on ipython notebook

–  Then on versioned source
–  Run unit tests

–  Commit

–  Keep editing, pulling changes from collaborators

•  When it’s ready:
–  Push back to GitHub



Typical Version Control Questions

•  When should I start using version control for my 
project?

•  Which files should I track in the repository?
•  How often should I commit?

•  How often should I push changes to a shared repo?

How Not To Lose Your Code :  Typical questions



Gitting Started
How Not To Lose Your Code :  Getting started

https://try.github.io/



Gitting Started
How Not To Lose Your Code :  Getting started

https://datahub.cusp.nyu.edu/computing.html



Advanced GitHub
How Not To Lose Your Code :  GitHub

•  Webhooks & services allow integration of 3rd party 
“apps” into your GitHub repo:
–  Travis CI: continuous integration, runs all unit tests on every 

pull request, for multiple builds (e.g. python 2.7, 3.4, 3.5)
–  ReviewNinja: code review, must get ninja star from someone 

who’s reviewed your code before you can merge PR
–  Coveralls: shows percentage of code covered by unit tests, 

highlights code not covered by any test.
–  Many more…



Advanced GitHub
How Not To Lose Your Code :  GitHub

•  Webhooks & services allow integration of 3rd party 
“apps” into your GitHub repo:
–  Travis CI: continuous integration, runs all unit tests on every 

pull request, for multiple builds (e.g. python 2.7, 3.4, 3.5)
–  ReviewNinja: code review, must get ninja star from someone 

who’s reviewed your code before you can merge PR
–  Coveralls: shows percentage of code covered by unit tests, 

highlights code not covered by any test.
–  Many more…



Publishing Code

•  Make sure it has a license!
–  BSD/MIT-style is a good choice for research code

–  GPL for complete applications or code with possible commercial value 

–  Ensure license is at least described in a README file

•  Make it citable, get a DOI
–  Zenodo.org

–  https://guides.github.com/activities/citable-code/

•  Code implementing research?
–  Tell users what they should cite if they use it

How Not To Lose Your Code :  Publishing code



3 Things To Do Tomorrow

1.  Get your current research code into a version control 
repository & push it to a hosting site (can be private)

2.  Pull it onto another computer, get it to build and run
3.  Open source? Choose a license!
–  Your code includes someone else’s code? Make sure the 

licenses are compatible!

How Not To Lose Your Code :  Publishing code



Unit Testing

Unit testing is awesome. 

We don’t have time to cover it. 
If you’re not familiar with it, look it up.

How Not To Lose Your Code :  Unit Testing



Unit Testing: What is it?

•  A “unit test” is a bit of code that calls one of your 
functions, gives it some input, and tells you whether 
it returned the right result

•  Write a set of these, and you have a “test suite”

•  A “test framework” can help you write them more 
quickly; there's at least one for every programming 
language and environment

•  Should be set up so you can run all tests in one go

How Not To Lose Your Code :  Unit Testing



Unit Testing: What is it for?

An automated way of ensuring:
•  That your code’s API works
•  That the individual parts of your code work 

correctly
•  That you don’t break your code when changing it

•  Also useful when developing a tricky algorithm 
(test-driven development)

How Not To Lose Your Code :  Unit Testing



Unit Testing Questions

How do I write tests when I don’t know what results to 
expect?
•  Break it down into functions whose behaviour you can 

predict

•  Test individual components, not the whole thing
•  Testable code is also more readable code (and so more 

reviewable code, and…)

Unit testing is about trying to ensure that the code 
implements the method—not that the method is the right one

How Not To Lose Your Code :  Unit Testing



Unit Testing Questions

What sort of test data and test cases should I write?
•  The simplest possible ones!

But I have big data sets and complex results!
•  Don’t use real-world data: that’s a different kind of 

test

•  Look for the smallest possible input to test a given 
behaviour

How Not To Lose Your Code :  Unit Testing



Unit Testing Questions

Example…

How Not To Lose Your Code :  Unit Testing



How Not To Lose Your Degree���
���

(or: How To Backup Your Data, Share It, and Be Awesome)



A Show of Hands
How Not To Lose Your Degree:  Horror Stories



Horror Story 1

Hi, a friend of mine just overwrote two months of her PhD thesis 
with an older version. I know recovery of overwritten data is 
possible, but wonder if I'd need special hardware to do it. Does 
anyone know something about this ?

Thank You.

5 October 2005 Linux Forums - http://tinyurl.com/8t7uaop

How Not To Lose Your Degree:  Horror Stories

WORKING COPY IS NOT ENOUGH

KEEP BACKUPS



Horror Story 2

A tiny television sits where a big screen used to, and a Christmas tree stands 
with little underneath it...
Even worse than the gifts, the crooks stole a MacBook Pro laptop and a 
LaCie hard drive.
The hard drive had ... her dissertation and nearly seven years of research for 
her doctoral degree she was set to finish in a few weeks.
Osuna had everything backed up on a separate hard drive in a safe, but 
burglars made off with that too.
"All I could think about is that all that time is gone, all that effort, everything 
is gone," Osuna said.

22 December 2010 KRQE - http://tinyurl.com/9a5j56f

How Not To Lose Your Degree:  Horror Stories

LOCAL COPY IS NOT ENOUGH

BACKUP TO THE CLOUD



Horror Story 3

...her car was broken into and her chrome Mac book pro was stolen.
She has a back-up for all but the last six months of research, but the 
most important part of the research had happened recently.

NBC4 January 06 2011 - http://tinyurl.com/92jl2lr

How Not To Lose Your Degree:  Horror Stories

MANUAL BACKUP IS NOT ENOUGH

SCHEDULE YOUR BACKUPS



Archiving Your Data

•  Project (or course, or degree) is over, now what?
•  Archive!

–  Allow follow-on research
–  Allow validation of your results

•  Beware!
–  Don’t use obscure formats
–  Don’t use obscure media 

•  BBC Domesday Project [1986] used laserdisc!

–  Don’t rely on technology being available
–  Keep original source material

How Not To Lose Your Degree:  Archiving



Archiving Your Data

When someone looks at your data, will they understand:
•  Why you created it?
•  What the data is useful for?

•  What column 27 in table 15 actually means?
•  What are the UNITS?! (Hertz? Meters? Miles?)
•  How the data was created?

•  What the source data was on which this data is based?

How Not To Lose Your Degree:  Archiving

THERE’S NO DATA WITHOUT METADATA!



Archiving Your Data
How Not To Lose Your Degree:  Archiving

CUSP Data Facility



Archiving Your Data
How Not To Lose Your Degree:  Archiving

https://datahub.cusp.nyu.edu/services.html



Archiving Your Data
How Not To Lose Your Degree:  Archiving

https://datahub.cusp.nyu.edu/services.html



How Not To Lose Your Degree:  Publishing Data

“Many researchers believe that if scientists set out to reproduce 
preclinical work published over the past decade, a majority would 
fail. This, in short, is the reproducibility crisis.”



Publishing Your Data
How Not To Lose Your Degree:  Publishing Data

Why publish my data?
•  Help others to:

–  Validate your research

–  Validate their implementation of your algorithm

–  Advance the state of the art
–  Combine with other datasets

•  So what’s in it for me?
–  Citations!

–  Impact! (job)



Publishing Your Data
How Not To Lose Your Degree:  Publishing Data



Publishing Your Data
How Not To Lose Your Degree:  Publishing Data

•  Make sure you are allowed to publish!
–  Who owns the data?

•  NYU / Industry partner / Funding body / Creative Commons

–  Adhere to CUSP policies
•  Privacy: are you allowed to publish the data?
•  Publication: are you expected to publish the data?
•  Repositories: where should you publish the data?
•  Licenses: who should be allowed to access the data?

•  Make sure it has a license!
–  Example: Creative Commons

•  CC0? CC Attribution Non-Commercial? Something else?



How Not To Lose Your Future Job���
���

(or: How To Maximize The Impact Of  Your Work and Be Awesome)





Get Found
How Not To Lose Your Future Job:  Online presence



Git Found?
How Not To Lose Your Future Job:  Online presence

•  Employers/recruiters increasingly searching/asking for 
GitHub profiles

•  But wait… there’s more…



Git Found?
How Not To Lose Your Future Job:  Online presence

•  Employers/recruiters increasingly searching/asking for 
GitHub profiles

•  But wait… there’s more…



Git Found?
How Not To Lose Your Future Job:  Online presence

So is GitHub my new CV?



Git Found?
How Not To Lose Your Future Job:  Online presence

So is GitHub my new CV?



Git Found?
How Not To Lose Your Future Job:  Online presence

•  Even a stellar GitHub account is not a replacement for:
–  Your resume
–  Interview skills

–  Presentation skills

•  But… it can help you get the interview in the first place!

•  Using Git (not specifically GitHub) is a basic skill every 
programmer should have nowadays



Take Control of Your Online Presence

•  LinkedIn, GitHub, etc.
–  Limited to displaying a specific type of information

•  A personal website is where you can really showcase 
your best!

How Not To Lose Your Future Job:  Online presence



Yes
How Not To Lose Your Future Job:  Online presence



No
How Not To Lose Your Future Job:  Online presence



Personal Website

•  Showcase your best
•  If an employer searches for you (online), have control 

over the first thing they see
•  An interesting blog-post (or ipython notebook!) can be a 

great source of traffic to your site!

How Not To Lose Your Future Job:  Online presence



Kaggle
How Not To Lose Your Future Job:  Online presence



Kaggle
How Not To Lose Your Future Job:  Online presence

•  Excellent experience…
•  But will it land me a job?

–  If you win…



Credits
Credits

Parts of this presentation (version control, GitHub, unit 
testing, data publishing/archiving and some horror stories) 
taken from:
•  Chris Cannam et. al (Queen Mary, University of London): 

ISMIR 2012 tutorial on Reusable software and 
reproducibility in music informatics research
–  http://soundsoftware.ac.uk/videos

•  Dan Ellis & Brian McFee (Columbia):  Version Control & 
Github: 
–  http://www.ee.columbia.edu/~dpwe/e6891/outline.html



RECAP

•  Code
–  Use version control (probably Git)
–  Write unit tests
–  Use online hosting (e.g. GitHub / BitBucket)

•  Data
–  Back it up!
–  Publish it / archive it

•  Online presence
–  Great way to get attention from employers 

•  (but not a replacement for the classic skill-set)

–  Be in control of your online presence!

Recap


