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ABSTRACT

SONYC Urban Sound Tagging (SONYC-UST) is a dataset for the
development and evaluation of machine listening systems for real-
world urban noise monitoring. It consists of 3068 audio recordings
from the “Sounds of New York City” (SONYC) acoustic sensor
network. Via the Zooniverse citizen science platform, volunteers
tagged the presence of 23 fine-grained classes that were chosen in
consultation with the New York City Department of Environmen-
tal Protection. These 23 fine-grained classes can be grouped into
eight coarse-grained classes. In this work, we describe the collec-
tion of this dataset, metrics used to evaluate tagging systems, and
the results of a simple baseline model.

Index Terms— Audio databases, Urban noise pollution, Sound
event detection

1. INTRODUCTION

Noise pollution is a major concern for urban residents and has neg-
ative effects on residents’ health [1, 2, 3] and learning [2, 4]. To
mitigate the recurrence of harmful sounds, the City of New York
employs a legal enforcement strategy guided by a “noise code”.
For example, jackhammers can only operate on weekdays; pet own-
ers are held accountable for their animals’ noises; ice cream trucks
may only play their jingles while in motion; blasting a car horn is
restricted to situations of imminent danger. After a city resident
complains about noise, the New York City Department of Environ-
mental Protection (DEP) sends an inspector to investigate the com-
plaint. If the inspector is able to confirm that the offending noise
violates the noise code, they incentivize the manager of the noise
source to reduce their noise footprint in compliance with the code.
Unfortunately, this complaint-driven enforcement approach results
in a mitigation response biased to neighborhoods who complain the
most, not necessarily the areas in which noise causes the most harm.
In addition, due to the transient nature of sound, the offending noise
source may have already ceased by the time an inspector arrives on
site to investigate the complaint.

Sounds of New York City (SONYC) is a research project inves-
tigating data-driven approaches to mitigating urban noise pollution.

∗This work was partially funded by National Science Foundation awards
1633259 and 1544753

One of its aims is to map the spatiotemporal distribution of noise
at the scale of a megacity like New York City, in real time, and
throughout multiple years. With such a map, city officials could
better understand noise in the city; more effectively allocate city
resources for mitigation; and develop informed mitigation strate-
gies while alleviating the biases inherent to complaint-driven ap-
proaches. To this end, SONYC has designed an acoustic sensor
for noise pollution monitoring that combines relatively high quality
sound acquisition with a relatively low production cost [5]. Be-
tween 2016 and 2019, over 50 different sensors have been assem-
bled and deployed in various areas of New York City.

Each SONYC sensor measures the sound pressure level (SPL)
of its immediate vicinity, but it does not infer and report the causes
of changes in SPL. From a perceptual standpoint, not all sources
of outdoor noise are equally unpleasant, nor are they equally en-
forcible with respect to the noise code. Therefore, it is necessary
to resort to computational methods for detection and classification
of acoustic scenes and events (DCASE) in the context of automated
noise pollution monitoring. To address this, the sensors have also
been collecting non-contiguous 10 s audio recordings during de-
ployment and have collectively gathered over 100 M recordings.

There are several attributes of urban sound event detection that
make it a challenging task. Sound sources of interest are often far
away from the sensors. Several sources of interest may occur simul-
taneously. Many sound classes seem quite similar, yet are distinct in
the noise code and so should be identified as such. Many other dis-
tractor sounds occur within urban sound recordings. And lastly, the
acoustic environment changes by location and by time within sea-
sonal cycles. Due to the complexity of this problem, it is important
to evaluate machine listening systems for monitoring urban noise in
realistic scenarios, using actual recordings from urban noise sensors
and a label space that matches the needs of city agencies.

In this article, we present the SONYC Urban Sound Tag-
ging (SONYC-UST) dataset1, which contains 3068 annotated 10
s recordings from the SONYC acoustic sensor network and which
served as the dataset for the DCASE 2019 Urban Sound Tagging
Challenge2. Each recording has been annotated using a set of 23
“tags”, which was developed in coordination with the New York
City Department of Environmental Protection (DEP) and represents

1Download the data at https://doi.org/10.5281/zenodo.3338310
2http://dcase.community/challenge2019/task-urban-sound-tagging

https://doi.org/10.33682/j5zw-2t88
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Figure 1: Hierarchical taxonomy of the SONYC Urban Sound Tag-
ging (SONYC-UST) dataset. Rectangular and round boxes respec-
tively denote coarse and fine urban sound tags.

many of the frequent causes of noise complaints in New York City.
Existing datasets for urban noise monitoring do not accurately

represent the problem of urban noise monitoring. The freefield1010
[6], UrbanSound [7], UrbanSound8k, [7], and Urban-SED [8]
datasets contain recordings curated from Freesound [9] rather than
recorded in a realistic noise monitoring scenario. In addition, these
datasets are multi-class, in which only the predominant sound class
is labeled. The exception is Urban-SED [8], which does have
strong, multi-label annotations, but it is a synthetic dataset that is not
representative of actual urban soundscapes. The TUT Sound Events
2016 [10, 11, 12] and 2017 [13, 14] datsets consists of audio record-
ings in real urban environments as well as providing strong, multi-
label annotations. However, these datasets have label sets limited to
human presence and traffic, and their spatiotemporal context is lim-
ited to a handful of times and locations. SONYC-UST addresses
these limitations by providing recordings from urban noise sensors
across a variety of times and locations, and by more closely match-
ing the label set to the needs of noise enforcement agencies.

2. SONYC-UST TAXONOMY

Through consultation with the New York Department of Environ-
mental Protection (DEP) and the New York noise code, we con-
structed a small, two-level urban sound taxonomy (see Figure 1)
consisting of 8 coarse-level and 23 fine-level sound categories, e.g.,
the coarse alert signals category contains four fine-level categories:
reverse beeper, car alarm, car horn, siren. Unlike the Urban Sound
Taxonomy [7], this taxonomy is not intended to provide a frame-
work for exhaustive description of urban sounds. Instead, it was
scoped to provide actionable information to the DEP, while also be-
ing understandable and manageable for novice annotators. The cho-
sen sound categories map to categories of interest in the noise code;

they were limited to those that seem likely discernible by novice
annotators; and we kept the number of categories small enough so
that they can all be visible at once in an annotation interface.

3. DATA COLLECTION

The SONYC acoustic sensor network consists of more than 50
acoustic sensors deployed around New York City and has recorded
over 100M 10-second audio clips since its launch in 2016. The
sensors are located in the Manhattan, Brooklyn, and Queens bor-
oughs of New York, with the highest concentration around New
York University’s Manhattan campus. To maintain the privacy of
bystanders’ conversations, the network’s sensors are positioned for
far-field recording, 15–25 feet above the ground, and record audio
clips at random intervals, rather than continuously.

To annotate the sensor recordings, we launched an annotation
campaign on Zooniverse [15, 16], the largest citizen-science plat-
form. In a previous study comparing multiple types of weak an-
notation tasks, we found that full multi-label annotation (i.e., an
annotation task in which all classes are annotated at once by each
annotator) with at least three annotators per recording resulted in
high quality annotations and high throughput with citizen science
volunteers [17]. In another previous study, we found that spectro-
gram visualizations aided annotators in producing high quality an-
notations [18]. Given these findings, we configured the annotation
task as a multi-label, weak annotation (i.e., tagging) task in which
the annotators were presented with a spectrogram visualization of
the audio clip along with the audio playback.

After presenting volunteers with instructions explaining the
task and a field guide describing the SONYC-UST classes, we asked
them to annotate the presence of all of the fine-level classes in a
recording. For every coarse-level class (e.g., alert signal) we also
included a fine-level other/unknown class (e.g., other/unknown alert
signal) with the goal of capturing an annotator’s uncertainty in a
fine-level tag while still annotating the coarse-level class. If an an-
notator marked a sound class as present in the recording, they were
also asked to annotate the proximity of the sound event (near, far,
not sure). Volunteers could annotate as many recordings as were
available.

Manually annotating all 100M+ of the unlabeled sensor record-
ings is not feasible, but annotating a random sample is not efficient
since many of them may not contain sound events of interest. To
address this, we sample sensor recordings that are most similar to
a small set of exemplary clips for each sound class in our taxon-
omy. The exemplary clips were curated from YouTube and selected
based on the presence of the target class in the audio along with vi-
sual confirmation from the video. Similarity to the exemplary clips
was computed using a distance function D, which compares a sen-
sor recording to M exemplary clips for a particular class:

D(X(c),yn) =
∑

m

1

Km

Km∑

k

min
j

d(x
(c)
m,k, yn,j)

2 (1)

where x
(c)
m,k is the kth VGGish [19] embedding frame of the mth

example clip (from class c) with Km frames, X(c) represents the
M exemplary clips from class c, yn,j is the j th VGGish embedding
frame of the nth sensor recording yn, and d is the Euclidean distance
function.

The SONYC-UST dataset contains annotated train, validate,
and test splits (2351 / 443 / 274 recordings respectively). We se-
lected these splits such that recordings from the same sensors would
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Figure 2: SONYC-UST tag distribution normalized for each split, in decreasing order of frequency in the train split. The shades of blue
indicate how many annotators tagged the class in a training set recording, i.e. darker shades of blue indicate higher annotator agreement.

not appear in both the train and validate sets, and such that the distri-
butions of citizen-science-provided labels were similar for both the
train and validate sets (see Figure 2). While doing so, we consid-
ered a class present in a sample if at least one of the three volunteers
annotated it as such. 35 sensors were assigned to the training set and
8 sensors assigned to the validate set. Unlike the train/validate sets,
the test set is not disjoint in terms of sensors, but rather it is disjoint
in time—all recordings in the test set are posterior to those in the
train/validate sets. This allows us to evaluate model generalization
to known locations at unseen times.

In addition to the crowdsourced annotations from Zooniverse,
we include “SONYC-team-verified” labels for both the valida-
tion and test splits. To create verified labels, we first distributed
recordings based on coarse-level sound category to members of the
SONYC research team for labeling. To determine whether a record-
ing belonged to a specific category for the validation process, we
selected those that had been annotated by at least one volunteer.
Next, two members of our team labeled each category indepen-
dently. Once each member had finished labeling their assigned cat-
egories, the two annotators for each class discussed and resolved la-
bel disagreements that occurred during the independent annotation
process. We use these agreed-upon “SONYC-team-verified” labels
as the “ground truth” when evaluating models. We also use these la-
bels to evaluate the annotations from Zooniverse, aggregated using
minority vote, which we have previously shown to be an effective
aggregation strategy in this context [17]. To aggregate with minor-
ity vote, we simply count a positive for a tag if at least one annotator
has labeled the audio clip with that tag. In Table 1, we present anno-
tation accuracy results using the metrics described Section 4. When
examining the class-wise F1 scores, we see that crowdsourced an-
notations score well against the ground-truth for many classes, but it
seems the Zooniverse annotators have difficulty identifying impact
sounds and powered saws, especially when discriminating between
fine-level classes.

In the SONYC-UST dataset, we include the Zooniverse vol-
unteers’ fine-level multi-label class-presence and proximity annota-
tions for all the audio recordings in all three data splits. We also
provide the SONYC-team-verified multi-label class-presence an-

Estimator: Annotators Baseline Model
Split: Validate Test Validate Test
Level: F C F C F C F C
Overall
AUPRC .73 .87 .75 .90 .67 .77 .62 .76
F1@0.5 .68 .83 .68 .84 .50 .70 .43 .67
Class F1@0.5
Engine .64 .94 .64 .94 .37 .79 .29 .76
Mech. imp. .25 .24 .32 .35 .29 .36 .62 .58
Non-mech. imp. .49 .49 .60 .60 .05 .02 .00 .11
Powered saw .47 .70 .28 .62 .30 .66 .45 .66
Alert signal .88 .95 .87 .92 .48 .67 .35 .48
Music .59 .76 .52 .76 .07 .07 .00 .00
Human voice .82 .95 .82 .96 .77 .84 .63 .77
Dog .74 .74 .96 .96 .00 .00 .66 .66

Table 1: The performance of the Zooniverse annotations (using mi-
nority vote aggregation) and the baseline classifier as compared the
the ground-truth annotations for both validate and test splits on the
coarse (C) and fine (F) levels. AUPRC and F1 are both micro-
averaged.

notations and the agreed-upon ground-truth class-presence labels
for the validate and test sets. All annotations also include identi-
fiers for both the annotator and the sensor from which the clip was
recorded. The coarse-level indicators of class presence are also in-
cluded and are computed by logical disjunction over the fine-level
class-presence tags associated with the coarse-level category.

4. MULTILABEL CLASSIFICATION METRICS

Due to the presence of other/unknown tags, SONYC-UST has an
incomplete ground truth at the fine taxonomical level. Such incom-
pleteness poses a problem for evaluating multilabel classifiers. We
propose a pragmatic solution to this problem; the guiding idea be-
hind our solution is to evaluate the prediction at the fine level only
when possible, and fall back to the coarse level if necessary.

Let a coarse-level category contain K fine-level tags. We de-
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note by t1 . . . tK the indicators of presence of these tags in the
ground truth. For k ∈ {1 . . .K}, the integer tk is equal to 1 if
the fine-level tag k is present in the ground truth and equal to 0 oth-
erwise. Furthermore, we denote by t0 the indicator of presence of
the other/unknown tag in the ground truth for the coarse category at
hand. In the following, we adopt the bar notation tk as a shorthand
for the logical negation (1 − tk). Whereas the fine-level composi-
tion of the coarse category cannot be assessed with certainty, taking
the product of all integers t0 . . . tk yields a coarse indicator of cer-
tain absence, equal to 1 if and only if none of the fine-level tags is
present, even the uncertain one. This operation of tag coarsening
allows to evaluate any prediction y against the ground truth t. In
each coarse category, the comparison of y and t results in, either, a
true positive (TP), a false positive (FP), or a false negative (FN):

TPcoarse =

(
1−

K∏

k=0

tk

)
×
(
1−

K∏

k=0

yk

)

FPcoarse =

(
K∏

k=0

tk

)
×
(
1−

K∏

k=0

yk

)

FNcoarse =

(
1−
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)
×
(

K∏

k=0

yk

)
. (2)

The three numbers above are equal to zero or one, and sum to one
in each coarse category. Although they are resilient to the incom-
pleteness of tags, this comes at the cost of them being insensitive
to permutations of complete fine-level tags within the same coarse
category. Therefore, we propose the alternative definitions below:
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In contrast to their coarse counterparts, these counters range from 0
to K. In the simple case where the ground truth is complete (i.e.,
t0 = 0), they boil down to a one-to-one comparison of complete
fine-level predicted tags yk with the complete fine-level ground
truth tags tk, with the incomplete prediction y0 being counted as
a false positive if present. However, if the ground truth contains the
incomplete tag (i.e., t0 = 1), FPfine falls to zero. If, in addition,
no complete fine-level ground truth tag tk matches a complete fine-
level prediction (i.e., tkyk = 0 for all k > 0), then the number of
true positives is set to one if the coarsened predicted tag is present
(i.e., yk = 0 for any k ≥ 0) and zero otherwise. Lastly, if the coars-
ened predicted tag is absent (i.e., yk = 0 for all k ≥ 0) and if the
ground truth does not contain any complete tag (i.e., tk = 0 for all
k > 0), then the number of false negatives is set to t0.

For example, if a small engine is present in the ground truth
and absent in the prediction but an other/unknown engine is pre-
dicted, then it is a true positive in the coarse-grained sense, but a
false negative in the fine-grained sense. However, if a small engine
is absent in the ground truth and present in the prediction, then the
outcome of the evaluation will depend on the completeness of the
ground truth for the coarse category of engines. If this coarse cate-
gory is complete (i.e. if the tag “engine of uncertain size” is absent

from the ground truth), then we may evaluate the small engine tag
at the fine level, and count it as a false positive. Conversely, if the
coarse category of engines is incomplete (i.e. the tag “engine of
uncertain size” is present in the ground truth), then we fall back to
coarse-level evaluation for the sample at hand, and count the small
engine prediction as a true positive, in aggregation with potential
predictions of medium engines and large engines.

In each coarse category, these integer counts can then be trans-
lated into well-known information retrieval metrics: precision, re-
call, F1 score, and area under the precision recall curve (AUPRC).
Furthermore, they can be micro-averaged across coarse categories
to yield an overall F1 score and an overall AUPRC. The repository
of our baseline system contains an open-source implementation of
these metrics, both for “coarse” and “fine” formulas3.

5. BASELINE SYSTEM

For the baseline classifier (cf. footnote 3) we use a multi-label logis-
tic regression model. The model uses VGGish embeddings [19] as
its input representation, which are computed from non-overlapping
0.96-second windows, giving us ten frames of 128-dimensional em-
beddings for each clip in our dataset. We train the model at the
frame-level and use the weak tags from each audio clip as the targets
for each of the 10 frames in a clip. To aggregate the crowdsourced
annotations for training, we count a positive for a tag if at least one
annotator has labeled the audio clip with that tag, i.e. minority vote.

We trained the model using stochastic gradient descent to min-
imize binary cross-entropy loss. To train the model to predict fine-
level tags, the loss is modified such that if “other/unknown” is an-
notated for a particular coarse tag, the loss for the fine tags corre-
sponding to this coarse tag is masked out. We use early stopping
based on the validation set loss to mitigate overfitting. We trained
one model to only predict fine-level tags, and we trained another
model to only predict coarse-level tags.

For clip-level inference, we predict tags at the frame level and
take the average of output tag probabilities as the clip-level tag prob-
abilities. The resulting summary and class-wise metrics are pre-
sented in Table 1. Overall the baseline models achieved an AUPRC
of 0.62 and 0.76 on the test split’s fine and coarse levels respec-
tively, and performed poorly on music and non-machinery impact
sounds, leaving considerable room for improvement.

6. CONCLUSION

SONYC-UST is a multi-label dataset for urban sound tagging,
recorded from an urban acoustic sensor network and annotated by
crowdsourced volunteers. This dataset addresses deficiencies in the
current set of urban sound datasets by providing real-world record-
ings and a label set that more closely matches the needs of city
agencies in charge of noise abatement. In this work, we present the
process used to collect this data; a taxonomy of urban sound tags
informed by the New York City noise code and consultation with
noise enforcement agents; metrics to evaluate tagging systems with
uncertain ground-truth data; and a baseline model demonstrating
that this is a challenging task with considerable room for improve-
ment. We hope this dataset will encourage researchers to focus on
this problem and advance the state of the art in urban sound event
detection, helping build tools to make cities quieter.

3https://github.com/sonyc-project/urban-sound-tagging-baseline
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