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ABSTRACT

Content creators often use music to enhance their stories,
as it can be a powerful tool to convey emotion. In this pa-
per, our goal is to help creators find music to match the
emotion of their story. We focus on text-based stories that
can be auralized (e.g., books), use multiple sentences as
input queries, and automatically retrieve matching music.
We formalize this task as a cross-modal text-to-music re-
trieval problem. Both the music and text domains have ex-
isting datasets with emotion labels, but mismatched emo-
tion vocabularies prevent us from using mood or emotion
annotations directly for matching. To address this chal-
lenge, we propose and investigate several emotion embed-
ding spaces, both manually defined (e.g., valence/arousal)
and data-driven (e.g., Word2Vec and metric learning) to
bridge this gap. Our experiments show that by leveraging
these embedding spaces, we are able to successfully bridge
the gap between modalities to facilitate cross modal re-
trieval. We show that our method can leverage the well es-
tablished valence-arousal space, but that it can also achieve
our goal via data-driven embedding spaces. By leverag-
ing data-driven embeddings, our approach has the poten-
tial of being generalized to other retrieval tasks that require
broader or completely different vocabularies.

1. INTRODUCTION

Content creators, both amateur and professional alike, of-
ten use music to enhance their storytelling due to its pow-
erful ability to elicit emotion 1 . For example, when dis-
sonant music is added to a horror movie, it can amplify
the scary mood of the story line. Similarly, cheerful music
can emphasize the excited mood in a scene of a birthday
party. Matching text and music to create a narrative, typi-
cally requires tediously browsing large-scale music collec-
tions, significant experience, and musical expertise. In this

1 We use the terms emotion and mood interchangeably following pre-
vious work [1].
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The children stood on tiptoe and 
shouted "hurrah," with joy; altogether 

it was a very splendid affair.

happy music

Figure 1: Cross-modal text-to-music retrieval using an
aligned, multimodal embedding space.

paper, we therefore address the problem of automatically
matching music to text as shown in Figure 1.

We formalize this task as a cross-modal retrieval prob-
lem [2] and focus on matching long-form text (multiple
sentences, paragraphs) to music. For queried sentences
like books and scripts, we seek to retrieve matching mu-
sic for applications such as podcasts, audio books, movies,
and film. To facilitate cross-modal retrieval, a common ap-
proach is to first perform feature extraction to convert each
data modality into an embedding space. Then, the different
embedding spaces must be matched to bridge the modality
gap by somehow aligning their different distributions [2].
Once aligned, (fast) nearest neighbor search can be used
for retrieval.

Various methods have been proposed for cross-modal
feature extraction and alignment. For example, canonical
correlation analysis has been used to bridge the modality
gap [3] as well as modern deep learning techniques that
learn common representation spaces [4, 5]. Such meth-
ods can be categorized into four groups: unsupervised,
pairwise-based, rank-based, and supervised methods [6].
Among these, supervised methods are the most straightfor-
ward and in theory can take advantage of existing labeled
datasets (e.g., labels of happy, sad) and themes (e.g., party,
wedding with corresponding text and music). Difficulties,
however, immediately arise because of mismatched dataset
taxonomies (vocabularies) per modality, making it chal-
lenging to use standard techniques directly.

Therefore, in this work we focus on the task of emotion-
based text- (e.g. sentences, paragraphs) to-music retrieval,
and investigate how we can best perform cross-modal re-
trieval with heterogeneous dataset taxonomies. To the best
of our knowledge, this problem has not been previously ad-



dressed and could be beneficial to media content creation
applications. We propose six different deep learning strate-
gies to extract relevant features and bridge the modality
gap between text and music including (1) classification (2)
multi-head classification (3) valence-arousal regression (4)
Word2Vec regression (5) two-branch metric learning and
(6) three-branch metric learning. We then evaluate each
approach on multiple text and music datasets, report objec-
tive results via precision at five and mean reciprocal rank,
and conclude with qualitative analysis and discussion. Our
results show that our valence-arousal-based method is a
powerful baseline for emotion-based cross-modal retrieval,
but that our three-branch metric-learning approach is com-
parable, more general, and does not require manually en-
gineered valence and arousal mappings.

2. RELATED WORK

2.1 Text Emotion Classification

Text emotion classification methods or the task of pre-
dicting emotion from text can be divided into three cate-
gories: lexicon-based models, traditional machine learning
models, and deep learning models. Lexicon-based mod-
els take advantage of pre-defined emotion lexicons, such
as NRC EmoLex [7] and WordNet-Affect [8] to match
keywords. Traditional machine learning approaches rec-
ognize emotions using algorithms such as support vector
machine (SVM) [9] and Naive Bayes [10]. Finally, deep
learning models use deep sequence models such as gated
recurrent unit (GRU) [11], bidirectional long-short term
memory (BiLSTM) [12], and Transformers [13]. Most
recently, Transformer models [14–16] have become quite
prevalent. Such models take advantage of transfer learn-
ing, are commonly pre-trained to learn language repre-
sentation with large datasets, and then applied to various
downstream tasks including question and answer systems
as well as emotion recognition [13].

2.2 Music Emotion Classification

Music emotion classification or the task of predicting emo-
tion from music audio is commonly divided into conven-
tional feature extraction and prediction approaches [17–
19], and end-to-end deep learning approaches [20, 21].
Deep learning approaches have become most prevalent
and commonly frame emotion recognition as a multi-class
or multi-label auto-tagging classification problem [22–26].
Recently, multiple music tagging models were evaluated
in a homogeneous evaluation pipeline [27] and found
three design recommendations for automatic music tag-
ging models: (1) use mel-spectrogram inputs, (2) use 3×3
convolutional filters, and (3) use short-chunk audio in-
puts with small hop sizes and max-pooling. Based on
this, a model using mel-spectrogram inputs and convolu-
tional neural networks with focal loss [28] won the Me-
diaEval 2020 Emotion-and-Theme-Recognition-in-Music-
Task 2 [29].

2 https://multimediaeval.github.io/2020-Emotion-and-Theme-
Recognition-in-Music-Task

Tag GoogleNews Domain-specific [35]

Chill
chilly, cold, chilled,

chills, shivers, shiver, warm,
frigid, frosty, balmy

chill_out, relax, chilled,
kick_back, relaxing, chill-out,

chilled_out, downtempo,
down_tempo, unwind

Table 1: Nearest words in GoogleNews and domain-
specific word embeddings [35]. Music-related words are
highlighted in bold.

2.3 Valence-arousal Regression & Word Embeddings

Beyond classification, previous works [30,31] suggest that
regression approaches can outperform classification ap-
proaches in music emotion recognition. Here, researchers
use the well-known valence-arousal emotion space [32,33]
where valence represents positive-to-negative emotions,
and arousal indicates the intensity of the emotions. These
annotations can be collected by human annotators di-
rectly [30] or by mapping existing mood labels into the
valence-arousal space using pre-defined lexicons [21, 34].

As an alternative to using the manually annotated
valence-arousal space, we can obtain tag (mood) embed-
dings in a more data-driven fashion. Pre-trained word em-
beddings, such as Word2Vec [36] and GloVe [37], repre-
sent words as vectors by learning word associations from
a large corpus. These embedding spaces use the cosine
similarity as a measure of semantic similarity. Recent
works [35,38] show the suitability of pre-trained word em-
bedding in music retrieval and that the embedding can in-
clude more music related context by training it with music
related documents [35, 39]—see Table 1.

2.4 Cross-modal Retrieval

Instead of targeting a pre-defined embedding space, mul-
timodal metric learning models aim at learning a shared
embedding space in which semantically similar items are
close together while dissimilar items are far apart in the
embedding space. Unsupervised approaches leverage co-
occurrence information. For example, when we collect
user-created video from the web, the video and audio
streams are synchronized, and this correspondence can be
exploited for representation learning [40,41]. On the other
hand, supervised methods learn discriminative representa-
tions by exploiting annotated labels. Here, data from dif-
ferent modalities are used to train models such that data
points with the same label should be close while data with
different labels should be far apart. Metric learning is also
used for bridging the modality gap between text and au-
dio, such as keyword spotting [42], text-based audio re-
trieval [43, 44], and tag-based music retrieval [35, 38] in
both supervised and unsupervised ways.

Two branch metric learning [45] is one of the most
prevalent architectures for cross-modal retrieval. It con-
sists of two branches where each branch extracts fea-
tures from each modality and maps them into a shared
embedding space. When optimized with a conventional
triplet loss (e.g. anchor text, positive song, negative song),
however, the model loses neighborhood structure within



modalities. To alleviate this issue, previous work [46]
added structure-preserving constraints by using additional
triplet losses within modalities (e.g., anchor text, positive
text, negative text).

3. MODELS

Cross-modal retrieval comprises two parts: feature extrac-
tion and bridging the modality gap. Our text and music
embeddings, Etext and Emusic respectively, are defined as
follows:

Etext =M(Ptext(x))
Emusic =M(Pmusic(x))

(1)

where P is a pre-trained model to extract features from
each modality and M is a multilayer perceptron (MLP) to
map them to a multimodal embedding space.

3.1 Pre-trained Models for Feature Extraction

In our work, we leverage the DistilBERT [16] transformer
model for text analysis, which is a compact variant of the
popular BERT transformer model [14, 16]. We use a pre-
trained model from the Huggingface library [47].

For the music representation model Pmusic, we use a
CNN with residual connections that are trained with mel-
spectrograms (ResNet) [27]. Due to its simplicity and high
performance, it is a broadly used architecture not only in
music but also in general audio representation learning.
Our ResNet consists of 7 convolutional layers with 3 × 3
filters followed by 2 × 2 max-pooling. The model is pre-
trained with the MagnaTagATune dataset 3 [48]. Both pre-
trained models are updated during the training process so
that they can adapt to the data.

3.2 Embedding Models to Bridge the Modality Gap

3.2.1 Classification

As a starting point, we train two separate mood classi-
fication models for text and music (Figure 2-(a)). Then
the model returns mood predictions and their likelihood
with softmax. From the predicted text mood, songs are
re-ranked based on their likelihoods of the text mood.
However, this classification approach has an inherent
limitation- the model cannot bridge the modalities when
they have different mood taxonomies.

3.2.2 Multi-head Classification with Shared Weights

Multi-head model is similar to the classification model but
it shares a 3-layered MLP for multimodal fusion in it (Fig-
ure 2-(b)). Since the model shares the weights across dif-
ferent modalities, it can predict the mood in different tax-
onomies by switching the classification head. We included
this model to see if the shared MLP can generalize across
modalities.

3 We use the pre-trained model from this open source repository:
https://github.com/minzwon/sota-music-tagging-models

3.2.3 Regression

Following previous work [21], we reformulate the clas-
sification task as a regression problem. By using NRC
VAD Lexicon [34], emotion labels can be mapped to the
valence-arousal space. However, this mapping process is
hand-crafted and also they cannot handle bi-grams or tri-
grams since the lexicon was created in a word-level. In
addition to leveraging the valence-arousal space, we also
experiment with a Word2Vec [36] embedding which was
pre-trained with music related text [35]. This data-driven
space supports a larger vocabulary, including bi-grams and
tri-grams, and is thus more flexible.

Regression models are trained separately for each
modality (Figure 2-(a)). Then the nearest items are re-
trieved based on their distance in the embedding space.
Note that, distance metrics are Euclidean distance for
the valence-arousal space, and cosine distance for the
Word2Vec space. However, regression is a one-way opti-
mization, i.e., optimizing text or mood into the pre-defined
word embedding space. In this case, neighborhood struc-
ture within each modality can be ignored. For example,
music with angry and exciting can share similar acoustic
characteristics. However, if two words are far apart in
Word2Vec space, this similarity cannot be considered by
regression. This obstacle motivates us to learn a shared em-
bedding space in a data-driven fashion using metric learn-
ing.

3.2.4 Metric Learning

Finally, we explore metric learning, which is a fully data-
driven approach that solves the cross modal text-to-music
retrieval in an end-to-end manner. Metric learning is opti-
mized to minimize a triplet loss T :

T (Ea, Ep, En) = [D(Ea, Ep)−D(Ea, En) + δ]+
(2)

where D is a cosine distance function, δ is a margin, and
Ea, Ep, En are embedding of anchor, positive, and neg-
ative examples, respectively. [·]+ is rectified linear unit.
Following conventional metric learning models for cross-
modal retrieval, we implement a two-branch metric learn-
ing model [45] (Figure 2-(c)) that optimizes the loss func-
tion L,

L = T (Ea
text, E

p
music, E

n
music). (3)

However, with the triplet function, neighborhood struc-
ture or data distribution within modalities can be lost.
Structure-preserving constraints [46] can alleviate the is-
sue but our problem is different from the case, since we
have different taxonomies across the modality which in-
cludes many non-overlapped moods.

To take advantage of different mood distribution of dif-
ferent modalities, we investigate metric learning model
with three branches (Figure 2-(d)) that results in three
triplet loss functions. Each loss function is designed to op-
timize tag-to-text, tag-to-music, and text-to-music triplet
losses as following:
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Figure 2: Model architectures. (a) Classification and regression models (b) Multi-head classification model with shared
weights (c) Two-branch metric learning (c) Three-branch metric learning.

Ltext = T (Ea
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text, E
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text),
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music),

Lcross = T (Ea
text, E

p
music, E
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music).

(4)

The model learns a shared mood space between Word2Vec
embedding and text embedding with a loss Ltext, and a
shared mood space between Word2Vec embedding and
music embedding with a loss Lmusic. Finally, they are
bridged together with a cross-modal triplet loss Lcross. We
refer to this model as three-branch metric learning.

Since text and music have different vocabularies in
our scenario, for both two-branch and three-branch met-
ric learning, we regard the nearest tags in pre-trained
Word2Vec space as positive pairs in cross-modal triplet
sampling (Table 2). We used distance-weighted sam-
pling [49] for more efficient negative mining following
previous work [35].

4. EXPERIMENTAL DESIGN

4.1 Text Datasets

Alm’s affect dataset [50] includes 1,383 sentences col-
lected from books written by three different authors: B.
Potter, H.C. Andersen, and the Brothers Grimm. 1,207
sentences in the dataset are annotated with one represen-
tative emotion among five: angry, fearful, happy, sad, and
surprised. To avoid unintended information leakage, we
decided to split data in an author-level. 1,040 sentences
by the Brothers Grimm and H.C. Andersen were used for
training and 167 sentences by B. Potter were used for val-
idation and test.

ISEAR dataset [51] is a corpus with 7,666 sentences
that are categorized into one of seven emotion: anger, dis-
gust, fear, joy, sadness, shame, and guilt. Each sentence
describes certain antecedents and those are associated with
according reactions (emotions). We split the dataset in a
stratified manner with ratio of 70% train, 15% validation,
and 15% test set.

4.2 Music Dataset

There are multiple datasets for music emotion recognition
such as the Million Song Dataset (MSD) subset [52], the
MTG-Jamendo mood subset [53], and the AudioSet mood
subset [54]. Before we choose our dataset, we run classi-
fication experiments for each subset. AudioSet subset re-
turned the highest accuracy, which means the labeled emo-

Original VA W2V Manual

anger angry angry angry
fearful sad scary scary
happy happy happy exciting, funny, happy

sad sad sad sad
surprised exciting happy exciting

anger angry angry angry
disgust angry angry angry, scary

fear angry angry scary
guilt sad angry angry, sad
joy exciting tender exciting, funny, happy

sadness sad tender sad
shame angry sad angry, sad

Table 2: Similar moods from Alm’s dataset (upper) and
ISEAR dataset (lower). Original is from text mood taxon-
omy and mapped tags are from music dataset.

tions are predictable with our ResNet model. One pos-
sible reason for this result is that unlike other datasets,
emotion labels of AudioSet subset are exclusive, having
a single emotion label per song. This is also beneficial
since we can map each song directly to the valence-arousal
space or word embedding space using emotion lexicons or
Word2Vec model, respectively. Otherwise, to handle mul-
tiple tags, we need to average their embedding vectors as
previous researchers did [21]. For these simplicity and re-
liability reasons, we use AudioSet mood subset.

AudioSet [54] mood subset consists of 16,995 music
clips collected from YouTube and each audio clip is 10-
second long. The dataset is categorized into 7 mood cat-
egories: happy, funny, sad, tender, exciting, angry, and
scary. The dataset is provided with a training set of 16,104
clips and an evaluation set of 540 clips.

4.3 Evaluation

We use two evaluation metrics: Precision at 5 (P@5) and
Mean Reciprocal Rank (MRR). However, since our text
and audio datasets use different taxonomies, we need a
mapping between the different vocabularies in order to
compute the metrics directly. Thus, we map the text emo-
tion taxonomy to the music emotion taxonomy — see Ta-
ble 2. We introduce three possible mappings: (1) mapping
based on the Euclidean distance between emotion labels in
the valence-arousal space (VA), (2) the cosine distance be-
tween emotion labels in Word2Vec space (W2V), or (3) di-
rect manual mapping of emotion labels. Given these map-
pings, we compute P@5 and MRR. Another challenge is
the label distribution in our datasets, which is unbalanced.



Methods
Alm’s dataset ISEAR dataset

VA W2V Manual VA W2V Manual

P@5 MRR P@5 MRR P@5 MRR P@5 MRR P@5 MRR P@5 MRR

Classification 0.2161 0.2436 0.1861 0.2157 0.2161 0.2436 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Multi-head Classification 0.2819 0.4181 0.1271 0.1381 0.3446 0.5304 0.3440 0.5084 0.3325 0.3625 0.3551 0.4803
V-A Regression 0.4325 0.6282 0.4125 0.5749 0.6100 0.7398 0.3018 0.5247 0.1866 0.3709 0.6218 0.7075
W2V Regression 0.3960 0.5010 0.4613 0.5591 0.5413 0.6363 0.3008 0.3829 0.4164 0.4908 0.5527 0.7668
Metric Learning (2-branch) 0.3399 0.3778 0.4897 0.5239 0.5374 0.5579 0.2695 0.3287 0.3951 0.4336 0.4438 0.6175
Metric Learning (3-branch) 0.3574 0.4348 0.5095 0.5863 0.5156 0.5880 0.2591 0.3445 0.4317 0.4953 0.6019 0.6675

Table 3: Retrieval scores

This can lead to over-optimistic results if the model per-
forms well on the majority class, even if it performs very
poorly on less common labels in the test dataset. To allevi-
ate this problem, we compute the macro-P@5 and macro-
MRR, i.e., we compute the metrics per class (emotion la-
bel) then average the per-class results. Henceforth we will
use P@5 and MRR to denote macro P@5 and MRR, re-
spectively.

Regression models are optimized to reduce mean
squared error and metric learning models are optimized
with the triplet losses detailed in Section 3.2.4. We use
the Adam optimizer with learning rate 0.0001 for all mod-
els. Audio inputs are resampled into 16 kHz and then con-
verted to 128-bin mel-spectrograms via a 512-point FFT
with 50% frame overlap. Implementation details are avail-
able online 4 .

5. RESULTS

5.1 Quantitative Results

The retrieval results for the different proposed models, us-
ing our three different proposed vocabulary mappings (VA,
W2V, Manual), for our two text datasets, are presented in
Table 3. First, we see that the classification model fails
in cross-modal retrieval. Since there are only two emo-
tions in common between Alm’s dataset and AudioSet (i.e.,
happy and sad), text inputs with other emotions will not
have any retrieval result. Furthermore, there’s no com-
mon emotion between ISEAR dataset and AudioSet, hence
P@5 and MRR are zero in this case. Classification models
can be powerful when there are exactly identical or par-
tially overlapped vocabularies, but since it is less likely in
real-world data, classification approach is less desirable for
cross-modal retrieval.

The multi-head classification model also performs
worse than other regression and metric learning models.
Some metrics look optimistic but when we check the con-
fusion matrix of the multi-head classification model, it
constantly predicts one or two specific emotions (e.g., pre-
dict angry for any type of input) no matter what the input
is. This means the shared MLP cannot generalize across
different modality heads.

The regression model using valence-arousal consis-
tently shows the best metrics as already proven in previous
single-modality emotion recognition works [30,31]. Since

4 https://github.com/minzwon/text2music-emotion-embedding.git

the space is carefully designed and the tag-to-space map-
ping process has been done manually [34], the valence-
arousal regression suits our cross-modal retrieval task.
However, this method cannot generalize to other datasets
that possibly have some tags that do not have manual tag-
to-space mapping. Word2Vec regression is suitable in that
case. It shows slightly lower but comparable retrieval per-
formance and it can handle abundant vocabulary, even bi-
grams and tri-grams, without a manual mapping process.

Finally, we assess the performance of metric learning.
Instead of predicting manually defined or pre-trained em-
beddings, metric learning aims at learning a shared embed-
ding space across different modalities. Both two-branch
and three-branch approaches claim their suitability for
cross-modal retrieval, and the three-branch metric learning
model consistently outperforms the two-branch model by
leveraging the relationship of tag-to-text and tag-to-music
within each modality.

5.2 Qualitative Results

To further investigate the characteristics of various em-
bedding spaces, we visualize them with 2D projection—
Figure 3. Due to limited space, we only visualize em-
bedding spaces with Alm’s dataset and AudioSet mood
subset. Note that they are all predicted embeddings us-
ing the test set. Except valence-arousal space (first row),
which is already 2D, high dimensional embedding spaces
are projected to a 2D space using the uniform manifold ap-
proximation and projection (UMAP) [55]. We use UMAP
since it preserves more of the global structure compared
to tSNE [56]. In the projection process, we first fit the
UMAP with one modality (in our figure: music), then pro-
jected other embeddings (in our figure: tag and text) into
the fitted 2D space.

First of all, for both the Word2Vec embedding space
and the metric learning space, relevant moods from differ-
ent taxonomies are neighboring together in the embedding
space. This is natural for the Word2Vec space because each
modality is fitted to optimize the pre-defined word embed-
dings. But this neighboring also can be found in metric
learning space. In Figure 3-(g) and (h) for example, anger
from text and angry from music are together, and fearful
from text and scary from music are together. Note that
Figure 3-(e) and (f) do not have word embeddings since the
two-branch metric learning model does not have a branch
to map the mood tags into the embedding space.



Model Retrieval Distribution Mapping

Classification fail . .
Multi-head classification fail . .
V-A regression success continuous manual
W2V regression success discriminative data-driven
Metric learning (2 branch) success discriminative data-driven
Metric learning (3 branch) success continuous data-driven

Table 4: Characteristics of different models

One of our main motivations to use metric learning with
three branches is to preserve neighborhood structure within
modalities. Since Word2Vec regression is a one-way opti-
mization, their embeddings are very discriminative (Fig-
ure 3-(c)). Also, the two-branch neural network does not
have any means to learn the neighborhood structure of each
modality. Especially, as shown in Table 2, when two-
branch metric learning uses the mapping of Alm’s mood
into AudioSet mood with Word2Vec similarity, exciting
and tender from music are not being used in training. If
we compare Figure 3-(f) and (h), exciting music in (h) are
more continuously distributed between angry and happy
while they are simply with happy in (f). Also, when we
compare text embeddings (see (e) and (g)), surprised is
continuously distributed between anger and happy in (g)
but not in (e). This continuity between music and text
can be found in the manually annotated valence-arousal
space (see (b) and (a), respectively), which means the pro-
posed three-branch metric learning model preserves neigh-
borhood structure within modalities in the learned multi-
modal embedding space. We summarize all the introduced
characteristics in Table 4.

6. CONCLUSION

In this work we tackled the task of matching music to text
with the goal of allowing users to enhance their text-based
stories with music that matches the mood of the text. We
formulated the problem as a cross-modal text-to-music re-
trieval problem, and identified the lack of a shared vo-
cabulary as a key challenge for bridging the gap between
modalities. To address this challenge, we proposed and in-
vestigated several emotion embedding spaces, both manu-
ally defined (valence/arousal) and data-driven (Word2Vec
and metric learning), to bridge between the text and mu-
sic modalities. Our experiments showed that by leveraging
these embedding spaces, we were able to facilitate cross
modal retrieval successfully. We showed that the care-
fully designed valence-arousal space can bridge different
modalities, but this can be also achieved via data-driven
embedding spaces. Especially, our proposed three-branch
metric learning model preserves the neighborhood struc-
ture of emotions within modalities. By leveraging data-
driven embeddings, our approach has the potential of being
generalized to other cross-modal retrieval tasks that require
broader or completely different vocabularies.

(a) Alm's text V-A (b) AudioSet music V-A

(c) Alm's text W2V (d) AudioSet music W2V

(e) Alm's-AudioSet text two-branch (f) Alm's-AudioSet music two-branch

(g) Alm's-AudioSet text three-branch (h) Alm's-AudioSet music three-branch

Figure 3: Valence-arousal embedding (first row), UMAP
of Word2Vec embedding (second row), UMAP of shared
embedding space from two-branch metric learning (third
row), and UMAP of shared embedding space from three-
branch metric learning (fourth row).
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