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ABSTRACT

Locating perceptually similar sound events within a contin-
uous recording is a common task for various audio applications.
However, current tools require users to manually listen to and label
all the locations of the sound events of interest, which is tedious
and time-consuming. In this work, we (1) adapt state-of-the-art
metric-based few-shot learning methods to automate the detection
of similar-sounding events, requiring only one or few examples of
the target event, (2) develop a method to automatically construct
a partial set of labeled examples (negative samples) to reduce user
labeling effort, and (3) develop an inference-time data augmentation
method to increase detection accuracy. To validate our approach,
we perform extensive comparative analysis of few-shot learning
methods for the task of keyword detection in speech. We show
that our approach successfully adapts closed-set few-shot learning
approaches to an open-set sound event detection problem.

Index Terms— Few-shot learning, sound event detection, key-
word detection, keyword spotting, speech

1. INTRODUCTION

Locating perceptually similar sound events within a continuous
recording is a basic, but important task for many audio applications.
For example, animators need to locate particular sounds in music
and SFX tracks to synchronize motion graphics, and podcasters have
to edit out filler words (e.g. “ahhs” and “umms”) to improve the flow
of speech. Noise monitoring solutions require identifying specific
sound events [1] and, more generally, labeling large audio datasets
for training machine learning models often requires identifying all
time locations where specific sound events occur [2–4]. However,
current audio processing tools require users to listen through the
entire recording and manually identify and label all the locations
of the sound events of interest, which is both hard and tedious. A
method to automate this process would save a significant amount of
time and human effort.

Modern deep learning-based sound event recognition and de-
tection methods typically require large amounts of data for train-
ing or fine-tuning models for specific applications [5–9]. As such,
the application of deep learning models to detect unseen and/or rare
sound classes with only few labels has been very limited. Interactive
user-in-the-loop sound event detection was proposed in [10], but this
work focused on reducing annotation time rather than improving ma-
chine accuracy. Different strategies for training audio classifiers with
few data for the task of acoustic event recognition were investigated
in [11], however, it focused on coping with limited data during train-
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Fig. 1. Proposed few-shot sound event detection method. To detect
a target sound event in a recording, we (a) apply metric-based few-
shot learning, (b) automatically construct a set of negative (blue) ex-
amples needed for inference, and (c) propose an inference-time data
augmentation method to generate more positive examples (orange).

ing, whereas our goal is to train models that can generalize to unseen
classes for which we have very few examples at inference time.

Recently, studies have proposed to tackle this latter problem us-
ing few-shot learning, where a classifier must learn to recognize
novel classes given only few examples from each [12, 13]. Tradi-
tional few-shot learning methods consider a C-way K-shot classifi-
cation task as a closed-set classification problem of labeling an audio
query with one of C unique class labels, given K labeled examples
per class, where C is fixed. To the best of our knowledge, however,
few-shot learning has not been applied to an open-set problem, such
as sound event detection, where a previously unseen target sound
needs to be detected in a sequence of unknown, previously unseen
sounds from an unbounded number of sound classes.

In this paper, we propose to leverage few-shot learning for open-
set sound event detection in order to identify perceptually similar
sound events within a recording. In doing so, we (1) adapt prior
metric-based few-shot learning approaches to the open-set sound
event detection task, (2) propose a method to automatically con-
struct a set of labeled negative examples required at inference time,
and (3) propose an inference-time data augmentation method to in-
crease detection accuracy, while reducing user-labeling effort. In
Figure 1, we depict the proposed method with our key contributions
mentioned above, which is applicable to a variety audio domains
such as speech, music, and environmental sound. We evaluate our
approach on speech and (4) provide extensive comparative analysis
of few-shot learning for the application of sound-based keyword de-
tection in speech. We show that our method achieves an average area
under the precision-recall curve (AUPRC) of 75.42% for detecting
unseen target keywords with only five labeled examples provided.
Finally, we (5) show that our approach generalizes to unseen lan-
guages without requiring any retraining or fine tuning.
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Fig. 2. Metric-based few-shot learning model (5-way 2-shot).

2. METHOD

2.1. Metric-based few-shot learning

In contrast to other types of few-shot learning methods [14–19],
metric-based methods provide a simple framework that allows feed-
forward inference, which is ideal for our purpose [20–23]. Few-shot
learning models are often trained to solve the aforementioned C-way
K-shot classification task, where C (ways) is the fixed number of
classes to discriminate between, and K (shots) is the number of ex-
amples provided per-class at testing time. Figure 2 is an example
of a 5-way 2-shot classification task, where each color represents a
class. Given a support set of C × K labeled examples, the goal of
a metric-based model is to embed the support and query sets into a
discriminative embedding space using a neural network femb, and
correctly classify each query by measuring the similarity between
the support and query embeddings with gsim, which can be a fixed
or learned metric function.

Training such a model using only C × K labeled examples
would not generalize well to unseen classes at inference time, since
K is often a small number in the range of one to five. To address
this, episodic training has been proposed to exploit a large training
set and extract transferrable knowledge by mimicking the few-shot
inference problem during training [21]. In each training iteration,
a training episode is formed by randomly selecting C classes from
the training set. For each selected class, K samples are first selected
to build a support set S of size of C × K, while a disjoint set of
q samples are selected to form a query set Q of size C × q. The
training objective is to minimize prediction loss of the samples inQ
conditioned on S. Therefore, in each training episode, the model is
learning to solve the C-way K-shot classification task. By training
with a large collection of episodes, each consisting of a different set
of C classes, the model learns how to learn from limited labeled data
and a class-agnostic discriminative ability.

In this work, we adapt four metric-based few-shot learning
methods for open-set sound event detection and compare their
performance. The models we compared include: Siamese Net-
works [20], Matching Networks [21], Prototypical Networks [22],
and Relation Networks [23]. The main difference between these
methods is gsim, or the distance metric used to measure the simi-
larity between the support and query embeddings to predict query
labels. Siamese Networks, our baseline, do not incorporate few-
shot classification or episodic training [24, 25]. Rather, they are
trained using paired data from the same or different classes with a
triplet loss and L1 distance [20, 25]. Matching Networks compute
the cosine distance between the query embedding and each support
embedding. Prototypical Networks compute the squared Euclidean
distance between the query embedding and the class mean (proto-
type) of each support embedding. Relation Networks replace the
fixed distance metrics with a learnable relation module.

2.2. Open-set sound event detection

Once a few-shot model is trained, we propose applying it to sound
event detection as depicted in Figure 1. Given a few labeled exam-
ples of a target sound event we want to find within a long recording,
we can apply a few-shot model by taking the labeled examples as a
support set and the remaining frames as a query set. The similarity
predicted by the model can then be used to form a detection curve.

As discussed in the introduction, the goal of sound event de-
tection is to discriminate between the target sound and everything
else, which is an open-set problem. The problem is then how do we
model the negative class? A practical solution is to formulate the
task as a binary classification problem where the negative class is
comprised of all non-target sounds. This, however, would require
the user to explicitly provide negative examples (to produce a nega-
tive support set), which is undesirable in terms of human effort. To
address this, we make the assumption that the target sound event is
relatively sparse and propose simply constructing negative examples
by randomly selecting frames within the recording as shown in Fig-
ure 1(b). In this way, we can automatically generate a (partial) sup-
port set for the negative class, required for few-shot learning, without
additional human effort.

2.3. Inference-time data augmentation

To further reduce user labeling effort, we also propose a novel strat-
egy for augmenting the positive examples at inference time without
additional human effort. For each user-provided example of the tar-
get sound event, we generate x additional examples by shifting the
selection window in time in both directions by 50 ms increments.
This is illustrated in Figure 1(c) with x = 2. The assumption here
is that shifting the context window around the original example cre-
ates new examples that are slightly different (time-shifted) from the
original one, but still contain the target sound event. In this way, the
model obtains several positive examples from every user-provided
example, increasing the robustness of the predictions.

3. EXPERIMENTAL DESIGN

3.1. Datasets

For experimentation, we use the Spoken Wikipedia Corpora (SWC)
[26]. It contains audio recordings from volunteer readers speak-
ing Wikipedia articles. We filter SWC in English by only keep-
ing recordings with word-level time-alignment annotations, resulting
in a subset consisting of 183 readers, approximately 700K aligned
words and 9K classes, where a class is defined as a specific word
spoken by a specific reader. The readers are partitioned into training,
validation, and test sets with a 138:15:30 ratio. Audio recordings are
downsampled to a sampling rate of 16 kHz. For each word instance,
we take a half-second context window centered on the word and
compute a 128 bin log-mel-spectrogram as the input to the model us-
ing the librosa [27] software package. We use a window length
of 25 ms, hop size of 10 ms, and an fast Fourier transform size of
64 ms. To construct a C-way K-shot training episode, we randomly
sample a reader from the training set, sample C word classes from
the reader, and sample K instances per class as the support set. The
query set is comprised of 16 separate word instances per each of the
C classes [28]. While we evaluate our proposed approach on speech
(due to the size of the available data), there is nothing speech-specific
about our method and it can be directly applied to other audio do-
mains such as music, bioacoustics, and environmental sound.



3.2. Model architecture and training

For all four metric-based few-shot learning methods, we use a stan-
dard convolutional neural network (CNN) for the embedding module
femb [28]. It consists of four CNN blocks, each of which has a con-
volutional layer with a 3 × 3 kernel, a batch normalization layer, a
ReLU activation layer, and a 2×2 maxpooling layer. We modify the
size of the last pooling layer in each few-shot learning model such
that the overall number of parameters in each architecture is roughly
the same (120k-230k). Models are trained using the Adam optimizer
in PyTorch with a learning rate of 0.001 for 60,000 episodes with
early stopping.

3.3. Metrics

Our evaluation is based on the detection of unseen word classes in
our test set recordings: we use 96 recordings from test readers in
SWC. In each recording, we pick up to 10 target words, resulting in
a total of 768 target keywords. For target words, we only consider
words that occur at least 10 times in the recording. If there are more
than 10 words that satisfy this condition, we sort the words by their
number of occurrences, divide the sorted list into 10 equally sized
bins, and sample one keyword per bin. In this way, we avoid only
selecting words that are either very common or very rare.

To detect a keyword in a test recording, we first draw p instances
of the keyword as a positive support set, then randomly draw n half-
second windows from the recording as a negative support set. We
explore various combinations of p and n in our evaluation. Given the
support set, we apply the trained few-shot model to half-second win-
dows centered on every (annotated) word in the test recording. The
ground truth labels are defined as value one for windows containing
the target keyword and zero for windows containing other words. We
repeat this process 10 times for each target keyword and aggregate
the results to compute a keyword-level area under precision-recall
curve (AUPRC). We compute a recording-level AUPRC for each test
recording by averaging all keyword-level AUPRC scores from that
recording. Finally, we compute and report the mean and standard
deviation across the 96 recording-level AUPRC scores. AUPRC is
a common metric for evaluating binary classification models which
factors in both precision and recall. It is particularly informative
in scenarios where there is significant class imbalance, such as our
case, where the negative class dramatically outweighs the positive
class. AUPRC scores range from 0 (worst case) to 1 (best case, in
our plots represented as 100%).

4. RESULTS

We present the results from four experiments, where we systemati-
cally vary (C,K, p, n, x) to see how each parameter affects model
performance. First, we compare different few-shot models with dif-
ferent training configurations. Next, at inference time, we exper-
iment with different strategies for modeling negative and positive
examples. Lastly, we evaluate the performance of our best model on
few-shot keyword detection in unseen languages.

4.1. Model comparison

We start by comparing models trained with different metric-based
few-shot learning methods and combinations of (C,K). Note that
for Siamese Networks the effective C is always two, since they are
trained with paired examples. The performance is evaluated with
p ∈ {1, 5}, without inference-time data augmentation, using the
optimal number of negative examples n, as discussed in Section 4.2.
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Fig. 3. AUPRC results for different few-shot models trained with
different (C, K) combinations. Either one or five labeled examples
p were provided at inference time.

The results are presented in Figure 3. We see that with K and p
fixed, increasing C produces better model performance for all meth-
ods. This matches findings from previous studies in computer vi-
sion [22]: a higher number of ways during training makes the classi-
fication task harder, forcing the model to learn a more discriminative
embedding space. This trend is particularly significant for Relation
Networks, which benefit from more ways to improve the learnable
relation module. We also experimented with training models with
C = 20, but did not see further improvement due to the dramatically
reduced amount of training data available (each training episode con-
sists of words from the same reader and the number of valid readers
drops significantly for large C).

With C and K fixed, p = 5 gives better model performance for
almost all methods compared to p = 1. This is especially critical
for Prototypical Networks. A prediction of Prototypical Networks
is based on a fixed distance measurement between the embedding
of the query and each class prototype, which is averaged over the
examples in the class. Therefore, more positive examples result in a
more stable representation of the target keyword, leading to more ro-
bust inference. Our results also confirm that Prototypical Networks
achieve the best audio classification results when K = p, which
was previously shown in the image domain [22], but never before
for audio. Overall, the best performance is obtained by Prototypical
Networks trained with (C,K) = (10, 5), i.e. 10-way 5-shot.

We also experimented with using an open-set formulation during
training: rather than including various positive classes as ways, we
trained models with 2-way 5-shot. The ways represent a positive
and a negative class, and the shots for the negative class are drawn
from multiple non-target classes, mimicking a 1-vs-all scenario for
sound event detection. However, this form of training did not lead
to any performance improvements and is not explored further in this
work. A possible explanation is that the pressure on the model to
learn a space that can discriminate between many different classes is
reduced under this binary classification formulation.

4.2. Negative class modeling

In our next experiment, we study the impact of the number of neg-
ative support samples n on performance, presented in Figure 4. We
see that model performance increases with increasing n and starts
plateauing at n = 50, when n is high enough to capture the vari-
ance of the track. The best performance is achieved when n = All,
i.e. using all frames of the recording. This is ideal from an applica-
tion standpoint, since we can just take the whole track as the negative
support set without any sampling (and without overfitting n).
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Fig. 4. AUPRC results as a function of the size of the negative sup-
port set, n. Results are from the best model: Prototypical Networks
with (C,K, p, x) = (10, 5, 5, 0).

4.3. Positive class modeling and inference-time augmentation

Next, we take a closer look at the positive support set by experi-
menting with different p and x. For each p from one to five, we try
three inference-time data augmentation settings: x = 0, i.e. no aug-
mentation; x = 2, i.e. for each labeled positive example we add two
neighboring windows into the positive support set, one shifted 50 ms
to its left and one shifted 50 ms to its right; and x = 4, where we
add two neighbors on each side using 50 ms and 100 ms shifts.

Starting with the top plot of Figure 5, we see that model per-
formance increases with increasing p for all x. This matches the
intuition that the model should be able to make more accurate pre-
dictions when more examples of the target keyword are provided.
Notably, the relative increase in performance diminishes as p gets
larger. The model performs dramatically better when p goes from
one to two or three, but the performance increase is less significant
when p goes up from four to five. Having more than one example of
the target sound event is definitely beneficial, but for scenarios where
the annotation cost is high, we can safely limit ourselves to five or
less examples without a significant compromise in performance.

While the increase in performance is significant when increasing
p from one to two or three, when we increase x (augmentation), we
see little improvement. A possible explanation is our use of a fixed
half-second context window. For words shorter than half a second,
the context window may include noise (parts of other words), while
words longer than half a second are not fully captured by the context
window. In both cases, our proposed augmentation may not result
in a better representation of the target keyword. To explore this, in
the bottom plot of Figure 5, we present the results when we limit
the target keywords to those with a duration that closely matches our
context-window, between 0.49 and 0.51 seconds. Now, we see a sig-
nificant improvement with augmentation: x = 2 gives an 11.4 per-
centage point boost when p = 1. The improvement remains notable
when p = 2. The effect of augmentation become less significant for
larger p and x, as the variation between additional positive exam-
ples generated by augmentation become less significant. But, when
there is only one example of the target sound event available, our
inference-time augmentation approach provides a significant perfor-
mance improvement with no additional human effort.

In future work, we plan to replace the fixed half-second con-
text window with a dynamic context window duration, where the
window length can adapt to the duration of the target sound event.
Under this formulation, we expect our proposed inference-time data
augmentation approach will be more effective.

4.4. Cross-language evaluation

It is important to note that even though we use recorded speech in our
evaluation, our approach is completely language agnostic and does
not rely at all on speech recognition at inference time. To demon-
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Fig. 5. AUPRC results for different p and x. Results are from the
best model: Prototypical Networks with (C,K, n) = (10, 5,All).
(Top) All target keywords are tested. (Bottom) Only keywords with
duration close to half-second context window are considered.

Language AUPRC(%)
English 75.42 ± 8.57
Dutch 75.14 ± 8.59
German 77.98 ± 6.94

Table 1. AUPRC results for detecting unseen keywords in SWC in
English, Dutch, and German. Results are from the best model: Pro-
totypical Networks with (C,K, p, n, x) = (10, 5, 5,All, 0) trained
on English only.

strate this, we take our best performing model, trained on English
recordings only, and evaluate it on recordings spoken in other lan-
guages, namely Dutch and German. We use the Dutch and German
versions of the SWC corpus for these experiments, following the
same evaluation setup used for English as discussed in Section 3.3.
Results for all three languages are presented in Table 1. Note, again,
that the model is only trained on English recordings. We see that
the model performs equally well on keyword spotting in Dutch, and
even better in German, despite having never been trained on audio
recordings in these languages. These results confirm that our model
is able to recognize similar sounding events in a way which is robust
to cross-language differences, and can easily generalize to unseen
languages. It also shows potential for application in audio domains
other than speech, such as music or environmental sound recordings.

5. CONCLUSION

In this work, we propose a new method for locating perceptually
similar sound events within a single continuous recording. We
adapt metric-based few-shot learning methods by (1) modifying
them to fit an open-set sound event detection problem formula-
tion, (2) proposing a method to automatically construct a set of
labeled negative samples without any additional human effort, (3)
proposing an inference-time data augmentation method to increase
detection accuracy, (4) performing an extensive evaluation for the
task of few-shot keyword detection for speech, and (5) validating
that our approach generalizes across languages without any retrain-
ing or fine tuning. In future work, we plan to explore replacing
our fixed context-window with a dynamic context-window, compare
our few-shot keyword detection method to state-of-the-art keyword
spotting techniques, and apply and evaluate our model on other
audio domains such as music and environmental sound recordings.
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