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ABSTRACT

Supervised learning for audio classification typically imposes a fixed
class vocabulary, which can be limiting for real-world applications
where the target class vocabulary is not known a priori or changes
dynamically. In this work, we introduce a few-shot continual learn-
ing framework for audio classification, where we can continuously
expand a trained base classifier to recognize novel classes based on
only few labeled data at inference time. This enables fast and inter-
active model updates by end-users with minimal human effort. To do
so, we leverage the dynamic few-shot learning technique and adapt
it to a challenging multi-label audio classification scenario. We in-
corporate a recent state-of-the-art audio feature extraction model as
a backbone and perform a comparative analysis of our approach on
two popular audio datasets (ESC-50 and AudioSet). We conduct an
in-depth evaluation to illustrate the complexities of the problem and
show that, while there is still room for improvement, our method out-
performs three baselines on novel class detection while maintaining
its performance on base classes.

Index Terms— Continual learning, few-shot learning, super-
vised learning, audio classification

1. INTRODUCTION

Audio classification is a well-studied research field [1-5] with a wide
variety of applications such as multimedia search and retrieval [4],
urban sound monitoring [6], bioacoustic monitoring [7], and audio
captioning [8]. Most recent audio classification methods employ a
standard supervised learning approach applied to deep neural net-
works. While successful, this approach has two significant draw-
backs: it requires large quantities of labeled data and can only detect
classes that were included in these data, i.e., it imposes a fixed class
vocabulary. These requirements, while seemingly innocuous, can
make a majority of audio classification methods unusable for appli-
cations where the target class vocabulary is not known a priori. That
is, many real-world scenarios require us to customize the class vo-
cabulary, such as adding new classes, for example, to personalize
the wake-up-words on smart devices, to monitor new bird species at
different locations, or to transcribe rare musical instruments.

As an alternative, few-shot learning [9-14] has been applied
to audio classification [15-17] and sound event detection [18, 19],
where a classifier must learn to recognize a novel class from very
few examples. Among different few-shot learning methods, metric-
based prototypical networks [12] have been shown to yield excellent
performance for audio [15, 18, 19]. However, few-shot methods do
not maintain the training data class vocabulary, requiring manual la-
beling of all novel classes for deployment, which can be overwhelm-
ing for large vocabulary problems.
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Fig. 1. Few-shot continual learning for multi-label audio classifica-
tion. A sample (grey) is labeled with one or more base classes (red)
defined at train time and novel classes (blue) defined at inference
time without retraining, using only few examples per novel class.

Continual learning (never-ending learning, incremental learning,
lifelong learning) [20-22], in contrast, is an online learning strat-
egy where an algorithm seeks to continuously adapt to a sequence
of tasks and perform well on all tasks without forgetting. It has
been proposed for sound classification [23] and sound event detec-
tion [24] to learn new sound events without forgetting the previ-
ously learned ones. However, continual learning approaches typi-
cally require retraining when introducing novel classes, complicated
training procedure, or large amounts of labeled data of the novel
classes, which are not ideal for practical application with resource-
constrained computing environments or audio domains.

Recently, the novel research field of few-shot continual learn-
ing (few-shot incremental learning, low-shot learning) combines the
strengths of the aforementioned approaches and aims to continu-
ously expand the capability of a classifier based on only few data
at inference time [25-28]. This enables fast and interactive model
updates by end-users. In this work, we (1) introduce a few-shot con-
tinual learning audio classification framework by leveraging the pre-
viously proposed dynamic few-shot learning technique (DFSL) [25]
as shown in Figure 1. Initially, we train a classifier on base classes
with abundant examples and extend it at inference time to recognize
previously unseen novel classes based on few labeled data while not
forgetting base classes. We tackle audio specific challenges includ-
ing multi-label and weak labels by (2) updating the problem def-
inition and loss in DFSL, and (3) incorporating a recent state-of-
the-art audio feature extraction model [29] as a backbone. We con-
duct a comparative analysis of our approach on two popular audio
datasets, (4) provide in-depth evaluation of base and novel class per-
formance to elucidate the difficulties of the problem, and (5) show
that our method outperforms three baselines on novel class classifi-
cation while maintaining performance on base classes. To the best of
our knowledge, this is the first work introducing few-shot continual
learning to the audio domain.



2. METHODS

2.1. Dynamic few-shot learning (DFSL)

Dynamic few-shot learning (DFSL) [25] is a classification approach
that aims to learn novel categories from only a few labeled data
points while not forgetting the base categories on which it was ini-
tially trained. To classify a given audio input, a typical supervised
convolutional neural network (CNN) classifier extracts a feature vec-
tor z € R? from the audio signal and compute per-class likelihoods
by applying a set of classification weight vectors w € R<, one per
class, to the features. In this context, DFSL extends a typical clas-
sifier with an additional module, the few-shot classification weight
generator, which can generate a classification weight vector for a
novel class. The weight generator takes only K labeled examples of
a novel class as input (typically K < 5), and exploits past knowl-
edge by incorporating an attention mechanism over the existing clas-
sification weight vectors of N base classes as shown in Figure 1,
where
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The resulting novel classification weight vector w'y; is a weighted
sum of the averaged feature vector z,.,, and the attention-based
weight vector wgy, Where Paug, Gatt € R? are learnable weights,
© is the Hadamard product, zqvg = % Zf; 2, and Wiy, is given
by
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which can be viewed as a linear combination of the base classifi-
cation weight vectors Wyase = {ws}i;. The weighting of each
vector is computed via an attention kernel Ar#(.,. ), which is a cosine
similarity function followed by a softmax over the base classes. z;
is the feature vector of the i;, novel example, ®, € R¥*? s a learn-
able matrix for query vector transformation, and {k;, € R¥}}, is
a set of learnable keys for memory indexing. Combining the gener-
ated novel weight vector w | ; with the original base weight vectors
Whase, We can jointly predict base and novel classes in one unified
framework. Note that there can be more than one novel class.

2.2. Training the few-shot classification weight generator

Following past work [25], given a training set with /N base classes
and a standard classifier pre-trained on these base examples, we train
the attention-based few-shot classification weight generator as fol-
lows. In each training iteration, we first sample M “pseudo” novel
classes from the base classes, simulating the novel classes we see at
inference time. For each pseudo-novel class, we sample K training
examples to generate its new weight vector via the few-shot weight
generator. This results in a new classification weight matrix W*,
which is a union of the generated pseudo-novel weights W}, and
the original weights for the remaining base classes W _as. We can
then update the weight generator parameters and base classification
weight vectors to minimize the classification loss on a batch with
both base and pseudo-novel classes. Note that the feature extraction
model is fixed after pre-training.

2.3. DFSL for multi-label, weakly-labeled audio classification

DFSL was originally proposed for multi-class (single-label) object
recognition in images. A critical characteristic of audio data is that
multiple sounds can overlap in time, making real-world audio clas-
sification a multi-label problem. To adapt DFSL to the audio do-
main, we replace the (categorical) cross-entropy loss with a binary

cross-entropy loss to train a model that can predict multiple concur-
rent classes. In addition, we use a powerful 14-layer CNN, which
achieved state-of-the-art audio tagging results [29], as the feature
extraction backbone. A global temporal pooling is applied after the
last convolutional layer to summarize the features, which is critical
for training with weakly-labeled audio data.

3. EXPERIMENTAL DESIGN

To evaluate our proposed few-shot continual learning via DFSL ap-
proach for audio classification, we apply it to two audio datasets,
ESC-50 and AudioSet, and compare its performance against three
baseline methods under a realistic evaluation setup where the test set
includes samples of both base classes and novel classes.

3.1. Datasets

ESC-50 consists of 2000 five-second environmental audio record-
ings [30]. Data are balanced between 50 classes, with 40 exam-
ples per class, covering animal sounds, natural soundscapes, human
sounds (non-speech), and ambient noises. ESC-50 is small, with a
single sound source per clip, minimal background noise, and vali-
dated labels, making it high-quality but also simple and unrealistic.
Note, while clips in ESC-50 are originally single-labeled, in our ex-
periment, we treat them as multi-labeled to directly compare it with
AudioSet by converting each class label to a one-hot vector.
AudioSet is a large-scale collection of over 2M human-labeled
ten-second sound clips drawn from YouTube videos [4]. It pro-
vides comprehensive coverage of real-world sounds spanning 527
sound classes organized in a hierarchical taxonomy. Despite its large
size, AudioSet is a challenging dataset due to its incomplete label-
ing (missing labels), weak labels (no timing information), and label
noise. Each clip in AudioSet can be labeled with multiple sound
events, but not all events within a clip are guaranteed to be labeled.
A quality assessment showed that a substantial number of classes
have poor annotation accuracy'. Since label noise is not the focus of
this study, to mitigate its impact on our evaluation, we use a subset of
accurately-labeled leaf classes. To this end, we only use leaf-classes
with an annotation quality of 80% or above', resulting in 140 classes.

3.2. Baselines

We compare our proposed approach against three baseline methods:
Retrain, Prototypical Network, and Base classifier + Prototype. In
the first baseline, we simply combine the base training data with
the few additional novel class examples to update the training set
and retrain the classifier. While conceptually simple, this approach
requires us to indefinitely store all the training data (original and
new) and repeatedly retrain whenever we encounter a new class.

Our second baseline is a pure few-shot learning approach based
on a Prototypical Network [12]. The model is trained on the base
classes to learn a discriminative feature space. Given this space, a
prototype representation can be computed for a novel class by av-
eraging the feature vectors of a few novel examples. The distance
between these class prototypes and a test datum in feature space en-
codes similarity. To recognize base classes at inference time, we
compute a prototype for each base class by averaging the feature
vectors of all the training data available for that class. Note that here
too we replace the cross-entropy loss with a binary cross-entropy
loss, to support multi-label classification.

Uhttps://research.google.com/audioset/dataset/index.html



Our third baseline, introduced in [25], combines a supervised
model for the base classes with a simple approach for generating
classification weights for novel classes: computing feature vectors
for the novel class examples using the supervised model, and treating
their average as the weight vector for the novel class: Wiy 11 = Zavg-
This Base classifier + Prototype approach is a naive way to extend a
pre-trained classifier to novel classes that relies solely on its feature
extraction layers without leveraging its classification weight matrix.

3.3. Training

We partition the classes in each dataset into three splits: base, novel
(val), and novel (test) with a ratio of 30:10:10 for ESC-50, and
100:20:20 for AudioSet. In ESC-50, we split samples in each base
class into 24:8:8 for training, validation, and testing. For AudioSet,
we use base-class samples from its released unbalanced train set for
training and validation with a 10:1 ratio. We downsample each audio
clip to 16 kHz and compute a 64-bin log-scaled Mel-spectrogram as
the input to the model using librosa [31] with a window length of 25
ms, hop size of 10 ms, and a fast Fourier transform size of 64 ms.

For our approach, we first train a supervised base classifier com-
prising a feature extraction model and a base classification weight
matrix. Note that for ESC-50, since it only has 24 training samples
per base class, we pre-train the feature extraction model for all meth-
ods (except Prototypical Network) on AudioSet, and only fine-tune
the last linear layer (the weight matrix) on ESC-50. Then we train
the attention-based few-shot weight generator following the steps
in Section 2.2, where (M, K) = (5,5), on batches of 100 sam-
ples of pseudo-novel classes and 100 samples of the remaining base
classes. We implement models in PyTorch [32] and use the Adam
optimizer [33] with a learning rate of 0.001 for 60,000 batches with
early stopping. A validation batch is similar to a training batch but
replacing the pseudo-novel classes with classes in the novel (val)
split. The baselines are trained using the same input representation
and feature extraction architecture. We train the prototypical net-
work using standard 5-way 5-shot classification tasks [12] sampled
from the base training set.

3.4. Evaluation

For evaluation we use actual novel classes as opposed to the pseudo-
novel classes used for training. We sample 5 labeled examples from
each class in the novel (test) split to infer novel classification weight
vectors, and combine them with the base weight matrix to extend
the classification vocabulary. We evaluate the updated classifier on
a test set of samples from both base and novel classes. We run 100
iterations of this process to account for sampling randomness and re-
port the averages for the following metrics: per-class mean average
precision (mAP) and F-measure (using 0.5 as the threshold), which
we aggregate separately across base and novel classes. mAP sum-
marizes the quality of a model’s precision-recall curve, while the
F-measure indicates model performance for a fixed threshold.

The ESC-50 test set has 320 examples, 8 examples for each class
in the base and novel (test) splits. Since we use most base class
samples for training, we are only left with 8 samples for testing, and
so we use the same number of test samples for the novel classes
for a balanced evaluation. For the AudioSet test-set we use samples
corresponding to the base and novel (test) classes from AudioSet’s
released evaluation set. While it is maximally-balanced with at least
50 positive examples for as many classes as possible, some classes
occur more frequently. We do not discard any samples from this test
set to maintain comparability with previous studies.

Note that in the previous work, when DFSL was evaluated on
jointly classifying a mixture of samples from both the base and novel
classes in a joint label space, only the final metric aggregated across
all classes was reported [25]. To add insight, we look at classifica-
tion performance on base and novel classes separately to show how
vocabulary expansion affects base and novel class recognition along
with the confusions between them.

4. RESULTS

4.1. ESC-50

In Table 1 we present the classification performance on the test set
for our proposed approach and the baselines. For reference we also
include the performance of the supervised Base classifier that is
trained on base classes only.

We see that retraining the supervised model with the few addi-
tional novel examples yields the highest mAP on both base and novel
classes and an F-measure comparable to other approaches. This may
be due to our use of transfer learning (pre-training on AudioSet).
Given that ESC-50 is a relatively easy dataset, fine-tuning with few
examples appears effective. For real-world applications, however,
retraining may not be an option as it requires on-device optimization,
dataset storage, and a heavy computational cost, making it either in-
feasible or impractical for, e.g., mobile devices.

On the other hand, DFSL achieves the highest F-measure on
novel classes with only a slight drop in base class performance com-
pared to the original base classifier. That is, it is able to learn to
classify novel classes by only seeing a few examples per class, while
not forgetting the base classes. Unlike retraining, it does not require
storing the base training data or any additional training. DFSL also
outperforms the Base classifier + Prototype method on novel classes
by a large margin, showing that given few novel examples, using the
weight vector generated by the few-shot weight generator for classi-
fication is notably more effective than using the feature averages.

The prototypical network does not work well under our evalua-
tion scheme. When we take a closer look, we see that it does not out-
put likelihoods over 0.5 and therefore requires threshold tuning for
meaningful F-measures. Threshold tuning, however, defeats the pur-
pose of working with only a few data points per novel class. There-
fore, we only present the mAP scores for the prototypical network.
The feature space learned from scratch on 5-way 5-shot classifica-
tion tasks using base classes is not discriminative enough to classify
30 base classes and 10 novel classes when combined. This shows
that the standard few-shot learning approach would require further
modification for continual learning.

Lastly, as a sanity check, we compute the performance of the
base classifier and DFSL model trained and evaluated on ESC-50
under its original single-label, multi-class setup, reported at the bot-
tom of Table 1. As expected, performance increases under this for-
mulation.

4.2. AudioSet

Next, we perform the evaluation on our 140-class subset of Au-
dioSet. Here the feature extraction model for all methods is trained
from scratch since we have a large amount of data for all base
classes. The results in the upper section of Table 2 show that DFSL
outperforms all baselines on novel classes, especially on F-measure,
and again with only a slight drop in performance for the base classes.
AudioSet is a much more challenging and realistic dataset compared
to ESC-50, with a larger vocabulary, label noise, incomplete and
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Table 1. Test performance on ESC-50 on predicting 30 base and 10
novel classes with only 5 labeled examples for each novel class.

Method Vocab \ mAP F-measure
| Base Novel Base Novel

Base clf. 100 0.55 - 0.50 -
Retrain 100+20 | 0.51 0.15 0.44 0.06

Proto. Net 100+20 | 0.19  0.07 -2 -2
Base clf. + Prototype 100 +20 | 0.55 0.19 0.50 0.08
DFSL (Ours) 100 +20 | 0.56 0.20 0.48 0.21

Base clf. 50 0.58 - 0.53 -
DFSL (pseudo-novel) 50 + 20 0.59 0.22 0.54 0.24
DFSL (novel) 50 + 20 0.59 0.24 0.49 0.26

Table 2. Test performance on AudioSet on predicting 100 base and
20 novel classes with only 5 labeled examples for each novel class.

weak labels, and multiple sound sources per clip. We see that re-
training or using prototype features with only 5 labeled data points
per novel class fails to generalize. With the larger vocabulary, the
prototypical network performs even worse on novel classes com-
pared to ESC-50. We see that not only can DFSL achieve continual
learning based on just a few examples per novel class at inference
time, but it can also work under challenging and practical conditions.

4.3. Error analysis

In Table 2, we see that while DFSL outperforms all baselines on
novel classes, there is still a large gap between its performance on
base and novel classes. To gain further insight, in Figure 2 we show
the DFSL confusion matrices for both ESC-50 and AudioSet. To
build a confusion matrix for multi-labeled data, given a test data
point, we first count all correctly predicted labels, then we attribute
each false prediction evenly across all ground truth labels. We nor-
malize each row by the number of examples with the corresponding
label.

We note an asymmetry between novel classes confused as base
versus base confused as novel, indicating that novel classes are over
predicted in both datasets. With DFSL, we can generate reasonable
classification weight vectors for novel classes, but, since they are
based on just a few labeled data points, they fail to fully discrimi-
nate between acoustically similar classes. For example, in ESC-50,
the novel class Sea waves often gets activated by samples labeled
as Rain, Train, Airplane, or Washing Machine. In AudioSet, the
novel class Banjo often gets activated by samples labeled as Acous-
tic Guitar, which is acoustically similar, but also by samples labeled
as other musical instruments such as Cello, Tabla, and Accordion.
These instruments do not necessarily sound like a banjo, but they

2Requires threshold tuning to compute meaningful F-measures.

Fig. 2. ESC-50 (leflt) and AudioSet (right) confusion matrix from
DFSL models, where y axes represent ground truth labels and x axes
represents model predictions. All axes are split into a set of base
classes and a set of novel classes. (A, E) Base confused as base, (B,
F) base confused as novel, (C, G) novel confused as base, and (D,
H) novel confused as novel. Darker colors represents higher counts.

are likely to exist in similar acoustic scenes. This type of confusion
resulting from label co-occurrences is specific to multi-labeled data.

4.4. Training with novel instead of pseudo-novel classes

To bring DFSL performance on novel classes in AudioSet closer to
its base class performance, we experiment with several training vari-
ations such as using a weighted loss, adding regularization, using a
smaller feature extraction model, and varying the number of pseudo-
novel classes as well as the number of labeled examples per class for
training. However, most of these variations did not lead to significant
improvement. The most impactful variation we have identified so
far is to better match the train and test scenarios by training the few-
shot weight generator on actual novel classes, i.e., classes the model
has never seen before, as opposed to pseudo-novel classes that are
sampled from the base classes the model has already seen. To exper-
iment with this idea, we split the 100 base classes in half, train the
base model on the first 50 classes, and train the few-shot weight gen-
erator by sampling novel classes from the remaining 50 classes. The
results at the bottom of Table 2 show that training with actual novel
classes improves performance on novel classes compared to training
with pseudo-novel classes, albeit at the cost of slightly lower base
class performance. As part of future work we plan to investigate im-
provements to the attention mechanism of the weight generator as
well as entirely replacing the weight generator with a discriminator
that directly predicts the novel class likelihood.

5. CONCLUSION

In this paper we propose a few-shot continual learning framework
for audio classification, which can expand its base classification vo-
cabulary to novel classes at inference time given just few labeled
examples. To this end, we adapt the dynamic few-shot learning
technique (DFSL) to multi-label audio classification, which extends
a standard base classifier with an attention-based few-shot weight
generator. We evaluate the proposed approach on two audio datasets,
ESC-50 and AudioSet, comparing its performance with several base-
lines, and conduct an error analysis to gain further insight. We also
propose a training variation to further improve performance on novel
classes. While there is still room for improvement, our results show
that DFSL is able to achieve few-shot continual learning under chal-
lenging and practical conditions without requiring any re-retraining.
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