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ABSTRACT

In this paper we describe our submission for the audio
melody extraction task of the Music Information Retrieval
Evaluation eXchange (MIREX) 2011 campaign. The sys-
tem presented here is an updated version of the one submit-
ted to last year’s campaign. Following a detailed analysis
of each step of our method, system parameters have been
optimised for melody extraction and the implementation is
now more efficient. Two variants of the system have been
submitted, each making use of a different spectral trans-
form, allowing us to asses whether the difference between
them is significant for overall performance.

Following the description of the system, we describe the
data-sets and metrics used for evaluation. This is followed
by a summary of the results and some conclusions.

1. INTRODUCTION

The goal of melody extraction systems is to automatically
detect the predominant melodic line of a piece of music,
and output a representation of this line. Traditionally, a
mid-level representation is used [5], comprised of a se-
quence of time-stamps and fundamental frequency (F0)
values.

In the following sections we describe our melody ex-
traction system [8], which is an updated version of the one
presented in [7]. A complete description of the system, in-
cluding a detailed evaluation, is provided in [8]. The sys-
tem is comprised of four main blocks: sinusoid extraction,
salience function computation, pitch contour creation, and
melody selection. In [9], the first two blocks of the system
were studied in detail. Different signal processing methods
were compared for sinusoid extraction, and the parameters
of the salience function were optimised for melody esti-
mation. The system presented here incorporates the con-
clusions reached in the aforementioned study, and in the
results section we will asses how the updated system per-
forms compared to last year’s submission.
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2. METHOD

2.1 Sinusoid Extraction

In the first block of the system we analyse the audio signal
and extract spectral peaks (sinusoids) which will be used to
construct the salience function in the next block. This pro-
cess is comprised of three main steps: pre-filtering, trans-
form and frequency/amplitude correction. In the pre-filtering
stage we apply the (time-domain) equal loudness filter [1],
which was shown in [9] to attenuate spectral components
belonging primarily to non-melody sources. Next, we ap-
ply a spectral transform and select the peaks of the mag-
nitude spectrum for further processing. For MIREX 2011,
two variants were submitted: in the first (SG1), we use the
Short-Time Fourier Transform with a 46ms Hann window.
In the second variant (SG2), we use the multi-resolution
FFT (MRFFT) proposed in [3], combining spectral peaks
from windows with of varying lengths (from 5.8ms up to
46ms). In both cases we use a hop size of 2.9ms and a
×4 zero padding-factor. In this way, we are be able to
asses whether the difference between a single and multi-
resolution transform is indeed significant for melody ex-
traction, at least in the case of our system. In the third
step the frequency and amplitude of the selected peaks are
re-estimated by calculating the peaks’ instantaneous fre-
quency (IF) using the phase vocoder method [4]. The reader
is referred to [9] for further details.

2.2 Salience Function

Next the spectral peaks are used to compute a representa-
tion of pitch salience over time, a salience function. Our
salience function is based on harmonic summation with
magnitude weighting, and spans a range of almost five oc-
taves from 55Hz to 1760Hz. Further details are provided
in [9]. In that study the parameters of the salience function
were optimised for melody extraction by evaluating it di-
rectly using metrics designed to estimate the predominance
of the true melody F0 compared to peaks in the salience
function caused by other sources. In the results section we
will examine how this optimisation affects the overall per-
formance of the complete system.

2.3 Pitch Contour Creation and Melody Selection

In the next block, the peaks of the salience function are
grouped over time using heuristics based on auditory stream-



ing cues [2]. This results in a set of pitch contours, out of
which the contours belonging to the melody need to be se-
lected. The contours are automatically analysed and a set
of contour characteristics is computed. In the final block
of the system, the contour characteristics and their distribu-
tions are used to filter out non-melody contours. First we
remove contours whose features suggest that there is no
melody present in this segment of the piece (voicing detec-
tion). The remaining contours are used to iteratively cal-
culate an overall melody pitch trajectory, which is used to
minimise octave errors and remove pitch outliers. Finally,
contour salience features are used to select the melody F0
at each frame from the remaining contours. For further
details the reader is referred to [8].

3. EVALUATION METHODOLOGY

3.1 Evaluation Collections

Four music data-sets are used for the evaluation, as detailed
in Table 1. Note that the excerpts in the MIREX09 data-set
were used to create three test collections each using a dif-
ferent signal-to-accompaniment ratio {-5dB, 0dB, +5dB},
resulting in a total of 6 test collections.

Collection Description
ADC2004 20 excerpts of roughly 20s in the genres

of pop, jazz and opera.
MIREX05 25 phrase excerpts of a 10-40s duration in

the genres of Rock, R&B, Pop, Jazz and
Solo classical piano.

MIREX08 Four 1 minute long excerpts from north
Indian classical vocal performances.

MIREX09 374 karaoke recordings of Chinese songs.
Each recording is mixed at three different
levels of Signal-to-Accompaniment Ratio
{-5dB, 0dB, +5 dB} for a total of 1,122
audio clips in three collections: MIREX09
-5dB, MIREX09 0dB and MIREX09 +5dB.

Table 1. Evaluation collections for MIREX 2011.

3.2 Evaluation Metrics

The algorithms are evaluated in terms of voicing recall,
voicing false alarm, raw pitch, raw chroma, and overall
accuracy which combines both pitch and voicing perfor-
mance. Further details on the evaluation metrics can be
found in [6]. The algorithms are allowed to return nega-
tive pitch values for frames which they determine as non-
voiced, which allows us to independently evaluate pitch
(and chroma) estimation performance and voicing detec-
tion performance.

4. RESULTS AND COMMENTS

In Table 2 we present the overall accuracy results for all
participating algorithms (our submissions are SG1 and SG2).
The best score achieved for each test-set is highlighted

in bold. In addition to the per test-set results the table
provides the mean overall accuracy averaged over the six
test-sets. We compute both the unweighted mean and a
weighted mean where the overall accuracy obtained for
each test-set is weighted by its total playtime.

We see that both variants of our algorithm achieve the
highest overall accuracy in four of the six test-sets. Conse-
quently, our method also achieves the highest mean overall
accuracy for both unweighted and weighted cases.

It is also interesting to observe that the unweighted and
weighted means are practically the same for our method,
indicating relatively consistent performance across all data-
sets. The only exception to this is the MIREX 2005 data-
set, where the performance of our method is relatively low 1 .
The cause for this is most likely the higher proportion of
instrumental excerpts (i.e. the melody is played by an in-
strument rather than sung) for which our method does not
perform as well.

Next, we see that there is no significant difference in
performance between our two submissions (SG1 and SG2).
This reinforces the conclusions reached in [9], in which
it was shown that for data-sets containing a varied selec-
tion of excerpts from different genres, the difference be-
tween a single resolution transform (STFT) and a multi-
resolution one (in our case the MRFFT [3]) is not signifi-
cant for melody extraction.

Finally we compare our results with those obtained by
our algorithm in last year’s MIREX evaluation, provided in
Table 3. We see that for all data-sets there is a significant
improvement in the overall accuracy. This confirms that
the parameter optimisation carried out in [9] indeed results
in a significant improvement in the overall performance of
our method 2 .
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[8] J. Salamon and E. Gómez. Melody extraction from
polyphonic music signals using pitch contour charac-
teristics. IEEE Transactions on Audio, Speech, and
Language Processing, In Press (2012).
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