
Justin J. Salamon

MuSearch Query by Example

Search Engine

Computer Science Tripos, Part II

Clare College

14th May 2007

Proforma

Name: Justin J. Salamon

College: Clare College

Project Title: MuSearch Query by Example Search Engine

Examination: Computer Science Tripos, 2007

Word Count: 11,850

Project Originator: Justin J. Salamon

Supervisor: Dr D. J. Greaves

Supervisor: Martin Rohrmeier

Original Aims of the Project

To implement a music search engine which allows users to search for a song by en-

tering part of the song’s musical content as a query. Suggested extensions include

implementing a client-server architecture to make the system accessible from a

web browser, supporting a midi controller for playing queries and supporting

audio input for singing queries.

Work Completed

The project specifications were implemented successfully and all the success crite-

ria were met. The implementation includes an original solution to data indexing,

and in addition to the basic specifications I have implemented the following ex-

tensions: client-server architecture, support for midi controller, the ability to

match a full midi file against the database and a set of additional GUI features.

i

Special Difficulties

None.

ii

Declaration

I, Justin J. Salamon of Clare College, being a candidate for Part II of the Com-

puter Science Tripos, hereby declare that this dissertation and the work described

in it are my own work, unaided except as may be specified below, and that the dis-

sertation does not contain material that has already been used to any substantial

extent for a comparable purpose.

Signed

Date 14th May 2007

iii

iv

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Background . 1

1.2.1 Motivation . 1

1.2.2 Audio Fingerprinting, Query by Example and Query by

Humming . 2

1.3 Previous Work . 3

2 Preparation 5

2.1 Requirements Analysis . 5

2.1.1 User requirements . 5

2.1.2 Functional Specification 6

2.1.3 Success Criteria . 6

2.2 Data Representation . 7

2.2.1 Overview . 7

2.2.2 The Standard MIDI File Format 7

2.2.3 The Data Refinement Model 8

2.3 Key Algorithms . 10

2.3.1 Computing Melodic Similarity 10

2.3.1.1 Overview . 10

2.3.1.2 String Representation 10

2.3.1.3 Local Alignment 11

2.3.2 Indexing . 14

2.3.2.1 The Problem of Indexing Non-Metric Spaces . . . 14

2.3.2.2 Seed Search as a Solution to Indexing 15

2.4 Project Design . 15

2.4.1 Language and Environment 15

2.4.2 Data Backup and Documentation 16

2.4.3 Modular Design . 16

v

2.4.4 Evaluation Design . 17

2.4.4.1 Test Corpus . 17

2.4.4.2 Evaluation . 17

3 Implementation 19

3.1 Data Representation and Organization 19

3.1.1 Target Representation . 19

3.1.1.1 Melody Extraction 19

3.1.1.2 Standardisation, Minimisation and Target Filtering 22

3.1.2 Query Representation and Contour 22

3.1.3 Database and Indexing . 23

3.1.3.1 Data structures 23

3.1.3.2 Functionalty . 24

3.2 Matching . 24

3.2.1 Implementing Local Alignment 25

3.2.2 The Cost Functions . 26

3.3 Searching . 28

3.3.1 Concurrent Searching . 28

3.3.2 The Search Process . 29

3.4 Client-Server Architecture . 29

3.4.1 Motivation . 29

3.4.2 The Networking Module 29

3.5 User Interface . 31

3.5.1 Design Overview . 31

3.5.2 The Keyboard Search . 33

3.5.2.1 Overview . 33

3.5.2.2 The Keyboard Search GUI 33

3.5.2.3 Making Queries 33

3.5.3 The Text Search . 34

3.5.3.1 Overview . 34

3.5.3.2 The Text Search GUI 34

3.5.3.3 Making Queries 35

3.5.4 Results Panel . 36

3.6 Extensions . 36

3.6.1 Additional GUI Features 36

3.6.1.1 Convert to Text 36

3.6.1.2 Instrument Selector 36

3.6.1.3 Save and Load 37

3.6.2 Full MIDI File Comparison 37

vi

3.6.3 MIDI Controller Support 37

4 Evaluation 39

4.1 Overview . 39

4.2 Test Corpus . 39

4.3 Data Collection Procedure . 39

4.3.1 Usability Section . 40

4.3.2 Searching Section . 40

4.4 Usability Evaluation Results . 40

4.5 Quantitative Results . 41

4.5.1 Overview . 41

4.5.2 Initial Results . 42

4.5.3 The Effect of Rhythm . 43

4.5.4 Choice of Seed Size . 43

4.5.5 Search Parameter Optimisation 45

4.5.5.1 Pitch to Rhythm Ratio 45

4.5.5.2 Full Cost to Reduced Cost Ratio 46

4.5.6 Seed Filtering . 48

4.5.7 Scalability . 48

5 Conclusion 53

5.1 Goals Achieved . 53

5.2 Unresolved Issues . 53

5.3 Future Extensions . 54

5.3.1 Melodic Extractor . 54

5.3.2 Elaborate Seed Filtering 54

5.3.3 Audio input . 54

5.4 Final Comments . 54

Bibliography 55

A Search Parameters 57

B Java Code for replaceP itch() 59

C Text Search Formats 61

D Task List for Usability Test 63

E Usability Test Questionnaire 65

vii

F Seed Distributions 67

G Project Proposal 69

viii

List of Figures

2.1 The data refinement model . 9

2.2 From pitch and IOI to pitch intervals and LogIOIRs 11

2.3 Calculation of single matrix cell 12

2.4 Local Alignment computation . 13

2.5 The overall project structure . 18

3.1 Entity-relationship model for database 23

3.2 The MuSearch Protocol . 30

3.3 The initial MuSearch GUI layout design 31

3.4 The MuSearch user interface . 32

4.1 oMRR as a function of the pitch and rhythm factors 46

4.2 oMRR as a function of the full and reduced costs 47

4.3 Targets vs Songs . 49

4.4 Avg. #Targets to Search vs #Targets in DB 49

4.5 Avg. Search Time vs #Targets in DB 50

4.6 MRR vs #Targets in DB . 50

4.7 oMRR vs #Targets in DB . 51

ix

Acknowledgements

I would like to thank Martin Rohrmeier and David Greaves for their useful com-

ments and suggestions, Alan Blackwell for some helpful references, the PhD group

at the Centre for Music and Science for their interest and support, and everyone

who devoted time to participate in the user tests.

x

Chapter 1

Introduction

1.1 Overview

My project concerns the creation of a content based music search engine. It is

a Query by Example system, allowing users to search for a song by playing part

of it without the need to know information such as the song title or composer. I

have successfully implemented the system according to the specifications in my

proposal and have met all the success criteria. My implementation includes an

original solution to data indexing based on an approach used in Bioinformatics,

and uses the concepts of pitch and rhythm contour to model melodic similarity

and provide flexible query input methods. In addition I have implemented the

suggested extensions of a client-server architecture to make the system accessible

from a web browser, and midi controller support for making queries using midi

instruments. I have also implemented two further extensions: support for full

midi file comparison (using a complete midi file as a query), and a set of additional

GUI features.

1.2 Background

1.2.1 Motivation

Music collections have traditionally been indexed according to textual informa-

tion describing the pieces (metadata) such as title, composer or performer. If

once the need to search for music was confined to people in music libraries, the

transition to digital media and the prevalence of portable media devices now

means searching and organising music is a task performed by millions of people

every day. Programs such as Apple’s iTunes and Microsoft’s Media Player are in

1

2 CHAPTER 1. INTRODUCTION

common use, and systems providing more elaborate ways of indexing music have

been developed1.

The problem arises when one wishes to find a piece of music without knowing

any of its metadata. This could be a tune stuck in their head or a song they have

just heard on the radio. In this situation all of the aforementioned systems are

of no use, and a different content based solution is required. This led me to the

idea of developing a system which allows the user to search for a piece of music

by entering part of the piece itself as a query. Systems in which queries are made

by providing part of the actual content are known as Query by Example (QBE)

systems.

1.2.2 Audio Fingerprinting, Query by Example and

Query by Humming

The service offered by Shazam2 is a QBE system which allows you to search for

a song by putting your mobile phone up next to a speaker sounding the song.

Shazam and similar systems use a technique called audio fingerprinting which

relies on extracting specific acoustic information from the original audio recording

to create a “fingerprint” which is used to query the database. The disadvantage

of such systems is that you must have the original audio available to record a

query, since any different version will produce a different fingerprint and will not

match the one in the database. For this reason I decided to implement a QBE

system that uses a symbolic representation of the music as a query (for example

playing part of the melody on a graphically visualised keyboard). This way users

can search for any song from memory, and queries containing mistakes can still

retrieve the correct song. In Query by Humming (QBH) systems the query is sung

or hummed into a microphone3. Such systems have the advantage of requiring

less musical experience, but are also less flexible (only one way of inputting a

query) and could be problematic for people with poor singing abilities. QBH

systems use pitch detection to convert the singing into a symbolic representation,

after which the search process is similar to that of QBE systems.

1The Music Genome Project uses over 400 attributes to classify songs.
2http://www.shazam.com/
3In my proposal I use the term QBH for both QBH and QBE as this was done in papers

I read during the initial research for the project. Further reading identified the term QBE to
accurately describe my system.

1.3. PREVIOUS WORK 3

1.3 Previous Work

QBE and QBH systems are very much a topic of research. Existing systems

include David Huron’s Themefinder4 and the Vocal Search5 system developed by

Pardo et. al. which is still a research system. Papers on QBH by music information

retrieval (MIR) researchers such as Bryan Pardo and Roger Dannenberg provide

a good insight into the current state of the field, and I build on some of the

approaches suggested in papers such as [3] and [14] and combine them with my

own ideas to provide a complete searching solution. During the implementation

phase of the project a beta version of a commercial QBH system called Midomi6

was launched. Though the details of the system are not published, its launch

indicates the growing popularity and demand for content based solutions for

music searching.

4http://themefinder.org/
5http://music.cs.northwestern.edu/research/vocal search/
6http://www.midomi.com/

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

In the following sections I will describe the preparatory work I undertook in

accordance with software engineering principles. This includes a requirements

analysis, research into the current state of music information retrieval and existing

QBH and QBE systems, and an overall project design plan. I will also describe

the main algorithms and concepts which form the core of the system.

2.1 Requirements Analysis

2.1.1 User requirements

The completed system should:

• Run properly on the three major operating systems – Windows, Linux and

MacOS.

• Provide a clear and simple graphical user interface.

• Provide an input method which is intuitive for people with basic musical

background. This is defined as the ability to play simple melodies on a

piano keyboard.

• Search a corpus of songs and retrieve songs which match the query in a way

which is musically meaningful1.

• Be able to match a query even if it is played in a different key or tempo to

that of the song in the database.

1The concept of melodic similarity is discussed further in section 2.3.1.

5

6 CHAPTER 2. PREPARATION

• Be able to match a query even if it contains a small number of inaccuracies

such as missing notes, added notes or notes with incorrect pitch or duration.

• Display the the top 10 results in order of relevance.

• Allow the user to listen to the results.

2.1.2 Functional Specification

Following the user requirements, the functional specification is as follows:

• The system will be written in Java (explained in section 2.4.1).

• A graphical user interface will provide two methods of inputting queries,

provided in two separate panels:

– A graphically visualised keyboard on which queries can be played using

either the mouse or computer keyboard.

– A text based method which represents a melody as a sequence of char-

acters, intended for more musically experienced users.

• The database will be built using a corpus of midi files.

• The results will be displayed as a list containing the songs’ titles and an

indication of how relevant each song is to the query. The user can select a

result and listen to the corresponding midi file.

2.1.3 Success Criteria

A successful implementation of the system will meet the following criteria:

• A Mean Reciprocal Rank not lower than 0.5 is measured for the test corpus.

• The system can search a corpus of 10,000 songs in under 5 seconds.

• Users should find the system intuitive to use, determined by usability tests.

A detailed explanation of the Mean Reciprocal Rank (MRR) metric and a

discussion of other common information retrieval (IR) metrics such as Precision

and Recall and their applicability is presented in the Evaluation chapter. It also

contains a detailed account of the experimental setup and the data used for the

evaluation.

2.2. DATA REPRESENTATION 7

2.2 Data Representation

2.2.1 Overview

Following research into existing systems such as the ones described in [14] and

[12] I decided to use the Standard Midi File Format to represent songs. The

main reasons for this are:

• This format offers a digital representation of music from which the informa-

tion required for melodic similarity computation can be easily extracted.

• Thousands of songs have already been transcribed into the midi file format

and are freely available on the internet.

In the following sections I will describe the parts of the midi specification

relevant to the project, and how further refinement of the data contained in a

midi file is beneficial for system design and efficiency.

2.2.2 The Standard MIDI File Format

The Musical Instrument Digital Interface2 (midi) specification defines a message

format (the “Midi Protocol”) for transferring musical data between electronic

devices. For example, to sound a note on a midi device you send a “Note On”

message, which specifies a key (pitch) value and a velocity (intensity) value. The

protocol includes messages for turning a note on or off, changing instrument

etc. The midi specification also defines a set of messages not directly related

to the production of sound, such as Meta Messages for transmitting text strings

(e.g. lyrics, copyright notice) and System Exclusive messages for transmitting

manufacturer specific instructions.

The Standard Midi File Format is a storage format in which every message

is combined with a timestamp to form a “‘midi event”, so that messages can be

recalled and replayed in the correct order at a later date. A midi timestamp is

specified in “ticks” which can be converted into an actual time value. The events

in a midi file are divided into one or more tracks. Most polyphonic midi files use

different tracks to store the parts of different instruments within a song.

The javax.sound.midi library provides tools for parsing midi files, separat-

ing them into tracks and extracting the individual midi events containing the

midi messages and timestamps. The only events I will be interested in are the

“Note On” and “Note Off” events, summarised in table 2.1.

2http://www.midi.org/

8 CHAPTER 2. PREPARATION

MIDI Event Code Data Byte 1 Data Byte 2

Note On 0x9 Pitch value (0-127) Velocity (0-127)

Note Off 0x8 Pitch value (0-127) Velocity (0-127)

Table 2.1: Useful midi events

2.2.3 The Data Refinement Model

A midi file will contain a large amount of data which is not needed, and only

the relevant musical information should be extracted and added to the database.

This will reduce the amount of memory and storage space required by every

song, and save having to extract the musical information every time a song is

compared to a query, making the system faster. The complete data refinement

model is described below (implementation details in section 3.1):

• Extraction – the first step is to extract melodies a user can search for from

the midi file. To allow the user to search for any part of a song, I extract a

separate melody from every track in the midi file. I do this by considering

only the “Note On” and “Note Off” events3 in a track and converting them

into individual note elements with a pitch value and onset/offset times. A

sequence of note elements will be referred to as a Melody.

• Standardisation – next, I convert every Melody into a standardised for-

mat called a Target. This format preserves the musical essence of the

Melody, but gets rid of performance specific information such as the spe-

cific key and tempo. Queries will also get converted into this format so

they can be matched against the targets. This means a query can be repre-

sented in any way that can be converted into this format (e.g. text string,

on-screen keyboard, midi file), decoupling the user interface (responsible for

query production) from the rest of the system and facilitating a modular

system design.

• Minimisation – the final step is to convert the Target into a compact

format, so that it takes up a minimal amount of memory or disk space

when not in use. A minimised Target is called a MinTarget, and will be

the format actually stored in the database. It can be expanded back into a

Target to be compared to a query.

The process is summarised in figure 2.1.

3A “Note On” with 0 velocity is treated the same as a “Note Off”.

2.2. DATA REPRESENTATION 9

Figure 2.1: The data refinement model

10 CHAPTER 2. PREPARATION

2.3 Key Algorithms

In this section I will present the two main algorithms used in the system.

2.3.1 Computing Melodic Similarity

Modelling an adequate representation of perceptual melodic similarity forms the

very core of this project. Given a symbolic representation of two melodies, the

aim is to produce a quantitative value indicating the degree of similarity (or

dissimilarity) between the two. A good solution will combine Computer Science

principles with concepts of music cognition. There are various approaches to this

task, and a comparative evaluation of some is given in [3]. It suggests that an

approach based on string matching is most promising for practical applications,

and in the following section I will described how string matching can be used to

compute melodic similarity.

2.3.1.1 Overview

The idea is to represent melodies as strings, and use a string matching algorithm

to compare them. In order for the comparison to give a result which is musically

meaningful (i.e. melodies should give a good match if they sound similar to a

human listener), careful thought is given to the format of the strings and the

matching algorithm is extended to take into account musical considerations.

2.3.1.2 String Representation

As explained in section 2.2.3, both song and query are converted into in a stan-

dardised format for comparison. The format includes a representation of the

melody’s pitch and rhythm.

Representing Pitch – Relative pitch is the interval between two adjacent

notes expressed in absolute values. A melody is represented as a sequence of

pitch intervals. The advantage of using relative pitch is that it is transposition

invariant, i.e. the specific key in which a query is represented is abstracted away,

meaning it will match a similar melody even if it is played in a different key.

Representing Rhythm – I start by taking every note’s Inter Onset Interval

(IOI), which is the time difference between the onset of the note and the onset of

the next note. Note onsets are more perceptually salient than offsets [3], so IOIs

represent the user’s perception of rhythm more accurately than note durations

(the time difference between the note onset and offset). Next I take the ratio

between the IOIs of every pair of consecutive notes (the IOIR). IOIRs have the

2.3. KEY ALGORITHMS 11

advantage of being tempo invariant, i.e. only the relative duration of notes is

important, so the user can play the query slower or faster than the version in the

midi file without affecting the search. The final step is taking the logarithm of

the IOIR and rounding to the nearest integer (LogIOIR [11]), grouping together

similar ratio values.

Using this representation a sequence of notes is converted into pairs of

〈pitch interval, LogIOIR〉 values which will be referred to as note intervals.

Figure 2.2: From pitch and IOI to pitch intervals and LogIOIRs

2.3.1.3 Local Alignment

Note intervals can be separated into two strings, one containing all the pitch

intervals and the other all the LogIOIRs. The similarity between two melodies

can be calculated using string matching techniques to compare the pitch strings

and the rhythm strings separately. The similarity of two strings is measured by

their edit distance [10]. Given two strings A and B, the edit distance d(A, B) is

the number of edit operations needed to transform A into B, using the following

operations:

• Skipping a character from A

• Skipping a character from B

• Replacing a character from A with a character from B

Local Alignment calculates the optimal alignment (and hence the lowest edit

distance) of one string with a subsection of another. This successfully models

searching for a query (which can be any part of a melody) within a longer target.

12 CHAPTER 2. PREPARATION

Using a dynamic-programming approach, the algorithm calculates the optimal

alignment by filling in a distance matrix. Given a query string Q = q1q2 . . . qm

and a target string T = t1t2 . . . tn, we fill a matrix D of size m + 1, n + 1 such

that every entry di,j denotes the cost of the optimal alignment of the prefixes

q1 . . . qi and tk . . . tj (1 ≤ k ≤ j). Starting with d0,0 = 0, the matrix is filled

according to equation 2.1:

di,j = min

di−1,j + skipCostq skip query character qi

di,j−1 + skipCostt skip target character tj
di−1,j−1 + replaceCost(qi, tj) replace qi with tj

(2.1)

Equation 2.1 is visualised in figure 2.3.

Figure 2.3: Calculation of single matrix cell

When filling in di,0, undefined matrix elements are considered as ∞. Since

the query can appear anywhere in the target, every cell in the first row d0,j is

set to zero, so that skipping target characters before the alignment section is not

penalised. The final edit distance is given by min0≤j≤n(dm,j), which is the cost of

the best local alignment, without penalising for skipped target characters after the

aligned section. As an example consider using the beginning of the theme from the

last movement of Beethoven’s 9th symphony as a query and matching it against

the beginning of “Twinkle Twinkle”, assuming skipCostq = 1, skipCostt = 1

and that replaceCost(qi, tj) is given by equation 2.2. The calculation is shown in

figure 2.4, with bold cells indicating the optimal alignment.

replaceCost(qi, tj) =

{
0 if qi = tj
1 otherwise

(2.2)

2.3. KEY ALGORITHMS 13

Figure 2.4: Local Alignment computation

The edit distance is given by min0≤j≤n(dm,j) = 1, which corresponds to the

alignment shown in table 2.2. Matches are aligned vertically and skips are indi-

cated by an asterisk (-2 is considered as one character).

Alignment

Target: 0 7 0 * 2 0 -2

Query: * * 0 1 2 0 *

Table 2.2: Best local alignment

The choice of costs in the previous example is arbitrary and does not take

musical considerations into account. This is addressed by replacing skipCostq
and skipCostt by the functions skipQueryCost(qi) and skipTargetCost(tj), and

implementing them (and replaceCost(qi, tj)) in a way which takes into account

musical considerations4. The improved version is given in Algorithm 1.

4Described in the Implementation chapter.

14 CHAPTER 2. PREPARATION

Algorithm 1: Local Alignment with Cost Functions

1. for 0 ≤ j ≤ n

2. d0,j = 0

3. for 1 ≤ i ≤ m

4. di,0 = di−1,0 + skipQueryCost(qi)

5. for 1 ≤ i ≤ m

6. for 1 ≤ j ≤ n

7. di,j = min

di−1,j + skipQueryCost(qi)

di,j−1 + skipTargetCost(tj)

di−1,j−1 + replaceCost(qi, tj)

8. cost = min0≤j≤n(dm,j)

2.3.2 Indexing

2.3.2.1 The Problem of Indexing Non-Metric Spaces

Indexing concerns organising data in a data structure that facilitates fast search-

ing. Given a set of data elements in a search space, we want to organise the

data such that finding the data element which is “nearest” to a query element

can be done efficiently without traversing the entire search space. Much research

has gone into data structures for indexing Euclidean spaces and general metric

spaces5. A metric space has a distance function d(x, y) which obeys the following

conditions:

• d(x, y) = d(y, x) (symmetry)

• 0 < d(x, y) < ∞, x 6= y

• d(x, x) = 0

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

In the case of my system, the search space is non-Euclidean, as only the

pairwise distances between elements can be computed. It is also non-metric, since

in order to get musically meaningful results, there must be a difference between

comparing a query to a target and comparing two targets, and so the distance

function does not obey the symmetry condition. To the best of my knowledge

there is no well known solution to indexing non-metric spaces, so I had to come

up with my own solution to the problem, described in the next section.

5For example the mvp-tree [2].

2.4. PROJECT DESIGN 15

2.3.2.2 Seed Search as a Solution to Indexing

My solution is based on the BLAST algorithm [5] used in Bioinformatics for DNA

similarity searching, and adopts the idea of dividing the search into stages, the

first of which is a “Seed Search” (Algorithm 2). Given a query string, I extract

short subsequences of the string called seeds. For example, given the string 12345

and using a seed length of 3, the seeds are 123, 234 and 345. Next, I perform an

exact search for these seeds in the database. This will retrieve the targets which

contain at least one exact match to one of the seeds extracted from the query. An

exact search is a lot faster than Local Alignment, and will provide a significant

reduction in the number of targets to search through. The retrieved targets are

matched against the query using Local Alignment and the songs which produced

the top matching targets are returned.

Algorithm 2: Seed Search

1. S = extractSeeds(Q)

2. Targets = ∅
3. while notEmpty(S)

4. seed = getElement(S)

5. Targets = Targets ∪ exactSearch(seed)

6. return Targets

The exact search can be precomputed when a target is added to the database.

Given a target, I extract all the seeds it contains and use them as keys into a

hash table. The table takes a seed as a key and returns the set of all targets

containing that seed. This reduces the exact search to retrieving an element from

a hash table which is O(log(n)) if the number of seeds in the database is n.

2.4 Project Design

In the following sections I will describe the design work and implementation

decisions made prior to the implementation phase.

2.4.1 Language and Environment

I decided to implement the project in Java, using the Eclipse development envi-

ronment. The reasons for this are:

• The portability of Java and Java Applets means the program can easily

support multiple platforms, and could easily be extended to support a

16 CHAPTER 2. PREPARATION

client-server architecture which offers a complete graphical user interface

online.

• Java has built in libraries for handling midi, including reading in midi files,

generating new midi events and synthesizing sound.

• I have experience developing Java applications using the Eclipse IDE.

2.4.2 Data Backup and Documentation

I will use a CVS repository to maintain recent backups of the project code.

The entire repository will be backed up on my personal computer, the SRCF

server and on my PWF filespace several times a week. A hard copy will also be

taken periodically on CD-ROM. The program code will be documented using the

JavaDoc facility and continuous progress will be reported in a wiki.

2.4.3 Modular Design

The project is divided into several core modules, which communicate with each

other through defined interfaces. This modular design will allow independent

development and testing of each module, and provides checkpoints for monitoring

the overall progress of the project. The modules are:

• Database – Stores the Targets and song metadata in relevant data struc-

tures, also facilitating the seed search.

• Extractor – Extracts Melodies from midi files.

• Standardiser – Converts Melodies into standardised format – Targets.

• Matcher – Compares a Query to a Target.

• Searcher – Performs the complete search process including the seed search.

• User Interface – Provides ways of producing queries, issuing search re-

quests and viewing the results.

In the case of a client-server architecture extension, I will also have a Net-

working module for handling communication between the client (which will in-

clude the user interface) and the server (comprised of all the other modules).

2.4. PROJECT DESIGN 17

In addition to the core modules, other code will include:

• A collection of test programs for testing the modules separately, as well as

testing module integration.

• A set of programs to assist project evaluation.

The overall structure is depicted in figure 2.5 overleaf.

2.4.4 Evaluation Design

2.4.4.1 Test Corpus

Most evaluation tasks I intend to carry out require a carefully compiled test

corpus in which all midi files are validated to be uncorrupted, polyphonic and

properly named. For this purpose I have compiled a corpus of 1,076 midi files.

For scalability tests I have also compiled a corpus of approximately 16,000 files.

2.4.4.2 Evaluation

Project evaluation will take into account three factors – search performance,

efficiency and usability. The first two require collecting user queries, and the third

performing usability tests. The evaluation will involve data collection through a

set of user tests combining usability evaluation and production of user queries,

followed by a detailed analysis of the collected data, all of which is fully described

in the Evaluation chapter.

18 CHAPTER 2. PREPARATION

Figure 2.5: The overall project structure

Chapter 3

Implementation

In this chapter I will describe how I implemented the modules and how they

combine to form the complete system. I will also describe the extensions I have

implemented and any important implementation decisions made.

3.1 Data Representation and Organization

I will start by describing the classes implementing the data refinement model

described in section 2.2.3, producing MinTargets for database storage. I will

then explain how the database is implemented and organises the data.

3.1.1 Target Representation

3.1.1.1 Melody Extraction

The javax.sound.midi.MidiSystem.getSequence() method reads in a midi

file and returns a Sequence object, a data structure containing the midi file’s

tracks. The Extractor class converts a Sequence into a set of Melody objects

which are later passed to the Standardiser. A Melody object stores a vector

of Note objects, each containing the data of a single note – its pitch, onset tick,

offset tick and IOI (measured in ticks).

Melody extraction is performed by the method extractPolyMelodies(),

which extracts a melody from every track. The method scans through a track’s

midi events converting pairs of “Note On” and “Note Off” events with matching

pitch values into a series Note objects, ignoring any other midi events encoun-

tered. A track can be polyphonic (contain overlapping notes or chords), in which

case a monophonic melody is extracted from it using the following rules:

19

20 CHAPTER 3. IMPLEMENTATION

• If a chord is encountered, only the highest note (likely to be the most

perceptually salient [13]) is kept.

• If a note starts before the previous note has ended, the overlap is removed

by trimming the duration of the previous note.

Once a series of notes is extracted, a second pass is performed to set the

IOI value for every note. The method setIOIs() takes a collection of Melody

objects and sets the IOI value for every note in every melody. The final step is to

check that the extracted melody is longer than a certain threshold (some tracks

contain a single cymbal hit or a few isolated notes, and should be disregarded).

The complete extraction process is described in pseudo code in Algorithm 3.

3.1. DATA REPRESENTATION AND ORGANIZATION 21

Algorithm 3: Melody Extraction

1. melodies = new V ector<Melody>()

2. for every Track in the Sequence

3. melody = new Melody()

4. haveStart = false

5. startT ick = 0

6. currentP itch = 0

7. for every Event in the Track

8. message = event.message

9. if (message == Note On)

10. /* If the previous note has ended, start a new note */

11. if (haveStart == false)

12. startT ick = event.tick

13. currentP itch = message.pitch

14. haveStart = true

15. /* If it is a chord keep the highest note */

16. else if (event.tick == startT ick)

17. currentP itch = max(message.pitch, currentP itch)

18. /* If it is an overlapping note truncate the previous

19. note and start a new note */

20. else

21. Melody.addNote(currentP itch, startT ick, event.tick)

22. startT ick = event.tick

23. currentP itch = message.pitch

24. else if (message == Note Off)

25. if (haveStart == true && currentP itch = message.P itch)

26. melody.addNote(currentP itch, startT ick, eventT ick)

27. haveStart = false

28. /* Make sure melody length is above threshold */

29. if (melody.size > threshold)

30. melodies.add(melody)

31. /* Set the IOIs for the notes in the extracted melodies */

32. setIOIs(melodies)

33. return melodies

22 CHAPTER 3. IMPLEMENTATION

3.1.1.2 Standardisation, Minimisation and Target Filtering

Standardiser class provides methods for converting a Melody into a Target,

and minimising a Target into a MinTarget.

As described in section 2.3.1, a target is a sequence of 〈pitch interval,LogIOIR〉
note intervals. To minimise storage requirements pitch and rhythm are stored

in two separate Byte arrays. In addition a target will store the filename of the

midi file from which it was derived, and a target ID to differentiate it from other

targets with the same filename. The method makeTarget() converts a Melody

(n notes) into a Target (n− 1 note intervals) using equations 3.1 and 3.2.

pitch[i] = noteP itch(i + 1)− noteP itch(i) (3.1)

rhythm[i] = round

(
log

(
noteIOI(i + 1)

noteIOI(i)

))
(3.2)

The minimisation phase is performed by makeMinTarget() and was designed

to separate the format used for matching from the storage format, so that the

latter can be optimised or changed without affecting the matching code. In

practice the target format described above is both convenient for matching and

efficient for storage, so there is no internal difference between a Target and a

MinTarget.

The final step before returning a target is passing it through the filtering

method isUseful(). In section 2.2.3 I explained that a melody is extracted

from every track. There are however two types of tracks which are never used.

The first is the drum track, and the second is any track which is too short to be

meaningful. Short tracks are filtered out during the extraction phase. Targets

created from drum tracks tend to have very long sequences of pitch intervals all

with value 0, so they can be detected and disregarded.

3.1.2 Query Representation and Contour

As explained in section 2.2.3, a query made by the user is converted into the same

standardised format as a Target. A standardised query is represented by the

Query class, which is identical to the Target class with one important exception.

In addition to the pitch interval and LogIOIR every note interval is extended to

contain the four values 〈pitch interval,LogIOIR, pitch contour, rhythm contour〉.
The contour values are stored in two additional character arrays – pitchContour

and rhythmContour.

3.1. DATA REPRESENTATION AND ORGANIZATION 23

Pitch Contour is a further abstraction of pitch intervals in which only the

direction of the melody is considered. I divide pitch contour into five categories

– big jump down (interval ≤ −5), little jump down (−4 ≤ interval ≤ −1), same

(interval = 0), little jump up (1 ≤ interval ≤ 4) and big jump up (interval ≥
5), represented in the pitchContour array by the characters D, d, s, u and U

respectively.

Rhythm Contour abstracts rhythm ratio by only considering whether

the next note is shorter (LogIOIR < 0), equal (LogIOIR = 0) or longer

(LogIOIR > 0), stored in the rhythmContour array as s, e and l respectively.

The four values 〈pitch interval,LogIOIR, pitch contour, rhythm contour〉 form

a query interval. The first two are precise elements and the last two are contour

elements. Given a query, the contour elements of each query interval are deter-

mined by checking which contour category fits the precise elements. Contour is

used to refine the Local Alignment algorithm, as detailed in section 3.2. Including

contour also means the user can make a query by specifying the contour values

directly. This offers users who do not remember the exact notes or rhythm a

simple yet powerful method of searching.

3.1.3 Database and Indexing

3.1.3.1 Data structures

Following the data refinement model detailed in section 2.2.3, the Database class

consists of two main data structures, one for storing the MinTargets extracted

from the midi representation of a song, and the other for storing the song’s

metadata. The relationship between song and MinTargets is shown in figure 3.1.

Figure 3.1: Entity-relationship model for database

24 CHAPTER 3. IMPLEMENTATION

A song is added to the database using using the addFile() method which

takes a midi file and song metadata. The metadata is stored in a Song object,

and all Song objects are stored in a hash table keyed by filename. The midi file

is passed through the Extractor and the Standardiser to get the MinTargets.

As explained in section 2.3.2.2, MinTargets are organised in a hash table (the

seed table) to facilitate a fast exact seed search. Each seed contains m pitch

intervals, and is represented as a comma separated string. The seed size m is

parameterised so that the effect of different seed sizes on search performance can

be evaluated later. The seed table is keyed by seed, and returns a HashGroup

– a container class holding a reference to every MinTarget containing that seed.

To add a MinTarget to the database I first extract the seeds from it. Seeds

containing a pitch interval whose absolute value is greater than 24 (two octaves)

are disregarded. Such intervals are highly unlikely to appear in a query, and this

helps limit the size of the seed table. I then key the seed table using the seeds

and add the MinTarget to the relevant HashGroups.

Both the seed table and the MinTargets are always kept in memory, rather

than keeping the table in memory and the MinTargets on disk. This is a design

choice I made following these observations:

• Keeping the MinTargets in memory will make the search process faster.

• A single MinTarget object is shared internally by all the HashGroups.

• The MinTargets are designed to be very sparse. For the purpose of the

project, even the largest database can be kept in memory (a corpus of

25,000 midi files, taking over 1GB in disk space and resulting in over 110,000

searchable targets uses less than 240MB of RAM).

3.1.3.2 Functionalty

The database provides methods for adding new files, removing files, retrieving

all the MinTargets matching a seed, saving the database and loading it. The

database is saved as a single file database.msdb, which holds the two main data

structures and the information they contain.

3.2 Matching

In this section I will describe the implementation of the Local Alignment algo-

rithm in the Matcher class. I will also explain how I use contour to make the

matching more musically meaningful.

3.2. MATCHING 25

3.2.1 Implementing Local Alignment

The algorithm (as described in section 2.3.1.3) is implemented twice in two differ-

ent methods: matchTargetPitch() and matchTargetCombined(). The former

calculates the cost of matching a query to a target based only on the pitch data,

whilst the latter factors in the rhythm data as well. The pitch-only version al-

lows users to make pitch-only queries in the text search, or ignore poor rhythm

in queries played on the on-screen keyboard.

For the method taking pitch and rhythm into account, the cost stored in

every cell of the matrix is the combination of the cost of matching the pitch

elements and the cost of matching the rhythm elements. Costs are combined

using combineCosts(), explained section 3.2.2. The extended algorithm used in

the matchCombined() method is given in Algorithm 4.

Algorithm 4: Local Alignment Combining Pitch and Rhythm

1. for 0 ≤ j ≤ n

2. d0,j = 0

3. for 1 ≤ i ≤ m

4. di,0 = di−1,0 + combineCosts

{
skipQueryP itch(Q, i)

skipQueryRhythm(Q, i)

5. for 1 ≤ i ≤ m

6. for 1 ≤ j ≤ n

7. skipQueryCost = di−1,j + combineCosts

{
skipQueryP itch(Q, i)

skipQueryRhythm(Q, i))

8. skipTargetCost = di,j−1 + combineCosts

{
skipTargetP itch(T, j)

skipTargetRhythm(T, j))

9. replaceCost = di−1,j−1 + combineCosts

{
replaceP itch(Q, T, i, j)

replaceRhythm(Q, T, i, j))

10. di,j = min

skipQueryCost

skipTargetCost

replaceCost

11. cost = min0≤j≤n(dm,j)

26 CHAPTER 3. IMPLEMENTATION

Choosing an appropriate string representation for a melody (as detailed

in previous sections) is the first step in ensuring the Local Alignment al-

gorithm returns musically meaningful results. The second is ensuring that

the cost functions skipQueryP itch(), skipQueryRhythm(), skipTargetP itch(),

skipTargetRhythm(), replaceP itch() and replaceRhythm() return costs that

reflect the degree of musical similarity between the note intervals under consid-

eration. I do this by taking contour into account, explained in the next section.

3.2.2 The Cost Functions

The SearchParameters class holds all the values returned by the cost functions

and other parameters used in the matching and the searching. This will later

enable me to easily change costs and search parameters to examine their effect

on search performance. The implementation of the functions is based on the

following musical assumptions:

• The user might jump an octave or forget to jump an octave while playing.

– Replacing a pitch interval which differs from the correct interval by a

multiple of 12 should have a lower cost.

• The user might repeat the same note fewer or more times than in the

original melody.

– Skipping a pitch interval of 0 should have a lower cost.

• The user might remember the general pitch contour of a melody, but get

the precise pitch value wrong.

– Replacing a query interval with an incorrect pitch interval but correct

pitch contour should have a lower cost.

• The user might remember whether the next note is longer or shorter, but

not exactly by how much.

– Replacing a query interval with an incorrect LogIOIR but correct

rhythm contour should have a lower cost.

• The pitch and rhythm might be represented with different degrees of accu-

racy, i.e. the pitch might contain more mistakes than the rhythm and vice

versa.

– The pitch and rhythm costs should be scaled by different factors when

combined into a single cost.

3.2. MATCHING 27

Following these assumptions, parameters are grouped into three categories:

• Full Costs – costs for skipping or replacing completely incorrect query

intervals. Set by default to 2.

• Reduced Costs – costs for skipping or replacing query intervals with in-

correct precise elements but correct contour element; costs for replacing

pitch intervals which are off by an integer number of octave; and the cost

for skipping pitch intervals of 0. Set by default to 1.

• Factors – the combineCosts() function multiplies the pitch cost by a

PITCH FACTOR and the rhythm cost by a RHYTHM FACTOR and sums them

together. The factors determine the pitch to rhythm ratio, i.e. which of the

two has greater influence on the matching. Set by default to 1:1.

A complete list of all search parameters is provided in appendix A. Every

cost function compares the query interval to the target interval and determines

whether the cost should be 0, reduced or full, and returns the appropriate cost.

The algorithm for replaceP itch() is given as an example (Algorithm 5), and the

Java code is provided in appendix B. The other cost functions are implemented

similarly.

Algorithm 5: Calculating the cost of replacing a pitch interval

1. Compare the pitch interval from the query to the interval from the target

2. First check for a match:

3. If they are equal

4. Return 0

5. Then check for a reduced cost:

6. If they differ by an integer number of octaves

7. Return REPLACE PITCH OCTAVE COST

8. If they belong to the same contour category

9. Return REPLACE PITCH CONTOUR COST

10. Otherwise must return a full cost:

11. Return REPLACE PITCH COST

28 CHAPTER 3. IMPLEMENTATION

3.3 Searching

In this section I will explain how the data structures and the matching algorithm

described so far are combined to perform the task of searching for a query in the

entire database.

3.3.1 Concurrent Searching

The complete search process is implemented in the Searcher class and carried

out by the searchReturnSongsMultiThreaded() method. The method takes a

Query object, and parameters indicating whether the search should be “pitch-

only” or include rhythm and how many results should be returned. The entire

process is multi-threaded to make the search faster – I compared the final version

of the search to the initial non-threaded version by measuring the search time

for a set of user generated queries. Multi-threading was found to reduce the

average search time by a factor of 3 when running on a server with two dual-core

processors1.

The search starts by calling getTargetsForSearch() to retrieve the targets

for the Local Alignment stage. The method takes a Query object, extracts the

seeds, keys the seed table and pools all the resulting MinTargets together. Getting

seeds from a query is trivial except in the case when the user includes contour in

their query, in which case some query intervals will only contain contour elements

and no pitch intervals. In this case the seeds (which are meant to be subsequences

of pitch intervals) will contain gaps, which can be filled by any pitch interval in

the range of the specified contour category. For example, if a query contains the

seed 2,u,-3, every seed starting with 2, followed by a value between 1 and 4 and

ending with -3 is relevant to the query. This is solved by scanning through the

keys in the seed table (i.e. the seeds) for relevant seeds and including them in the

seed search. Next the retrieved targets are split into m equally sized groups (eight

by default). Each group is passed to a separate SearcherThread which computes

the Local Alignment cost for every target and returns the top n matching songs

together with their costs2. The results from all the threads are pooled together,

and the top n results overall are returned. The process is thread safe since

the only write operation performed by a thread is adding its search results to

the pool of results, done by calling addSongs() which is synchronized (uses a

mutual exclusion lock). The operation of each individual thread is described in

the following section.

1Full specification of the SRCF server and a detailed evaluation of search performance is
given in chapter 4.

2n is parameterised. For displaying results in the user interface n = 10.

3.4. CLIENT-SERVER ARCHITECTURE 29

3.3.2 The Search Process

The SearcherThread takes a Query and a set of MinTargets and returns the top

n scoring Song objects together with their match cost. I convert every MinTarget

into a Target and compute the match cost against the query using the Matcher.

I use a scoreboard to keep a Target’s match cost together with the Song object

containing the metadata of the song from which the target was extracted. If

another target extracted from the same song gives a lower cost the scoreboard is

updated, so overall the lowest cost for a song is kept. Once I have computed the

matching cost for all the targets, the top n songs in the scoreboard are returned

to the Searcher.

3.4 Client-Server Architecture

3.4.1 Motivation

In my project proposal I suggested implementing a client-server architecture as

a possible extension. Bearing this in mind I designed the system in a modu-

lar manner so that none of the components described so far would require any

alteration. A client-server architecture has clear advantages:

• The system is easily accessible to anyone through a web browser.

• The midi files and database only need to be stored on a single server ma-

chine.

• Any heavy computation is performed by the server.

I realised that these properties would be very useful for the evaluation of the

project. I could run user tests simultaneously, or let users do part of the test

remotely. With the project on schedule, I decided to implement this architecture

as part of the core project.

3.4.2 The Networking Module

The networking module consists of two main classes, MuSearchClient and

MuSearchServer. The server class is an executable java program which runs con-

tinuously on a server machine. Once started it loads database.msdb from disk

and then listens for incoming TCP connections. To handle concurrent search

requests, a new MuSearchServerThread is run for every incoming request.

30 CHAPTER 3. IMPLEMENTATION

Communication between client and server is implemented using the java.io

and java.net libraries which provide methods for creating and handling TCP

connections. When a user issues a search request the user interface instantiates

a new MuSearchClient object and calls sendQuery(). The method is passed a

Query, the SearchParameters to be used and a boolean pitchOnly indicating

whether rhythm should be included in the search3. The client sends these objects

to the server using the MuSearch Protocol which runs over the TCP connection.

The server performs the search and sends the client a Vector containing the

search results. The client finally invokes a method to display the results in the

user interface.

The MuSearch Protocol works as follows. Once a connection is established

the client can optionally send a setSP message, after which it must send a

SearchParameters object. It then sends a search message, after which it must

send the Query object followed by the pitchOnly boolean. The server will then

use a Searcher to perform the search and obtain a Vector of search results (each

result is a ResultPair<Song> object containing a Song object and a cost) which

is sent back to the client. Finally the client must send an end message to close

the connection (also closed if the client crashes). A typical session is described

in figure 3.2.

Figure 3.2: The MuSearch Protocol

3The objects are validated by the user interface before being passed to the MuSearchClient.

3.5. USER INTERFACE 31

3.5 User Interface

Following the project specifications, the MuSearch GUI is divided into three

panels. The Text Search panel for inputting queries in textual form, the Keyboard

Search panel for inputting queries by playing on a graphically visualised keyboard

and the Results panel for displaying the results of the search. In the following

sections I will describe the overall design of the user interface and how each panel

is implemented.

3.5.1 Design Overview

The GUI is implemented as a JApplet embedded in a web page. To make it clear

I decided to have all three panels visible at all times, separated by borders. The

initial layout design is shown in figure 3.3 and the end result including added

extensions is shown in figure 3.4.

Figure 3.3: The initial MuSearch GUI layout design

32 CHAPTER 3. IMPLEMENTATION

Figure 3.4: The MuSearch user interface

3.5. USER INTERFACE 33

3.5.2 The Keyboard Search

3.5.2.1 Overview

The keyboard search is intended as the primary search method for non-expert

users. As explained in [1], a direct manipulation approach to query specification

often evokes enthusiasm from users, and is in many cases easier to use than other

methods.

3.5.2.2 The Keyboard Search GUI

The on-screen keyboard is implemented as a set of JPanel objects representing

individual keys, which makes detecting mouse events on specific keys easy. The

GUI has Record, Play and Stop buttons allowing the user to record a query and

play it back. It has two search buttons – Search for making pitch-only queries

and Search With Rhythm for including rhythm in the search4. It also has a status

panel to display error messages and a progress bar to indicate search progress or

that the program is recording.

3.5.2.3 Making Queries

I use the javax.sound.midi library to get access to the client machine’s default

midi devices – the Synthesizer and the Sequencer. midi messages can be sent

to the Synthesizer to produce sound, and to the Sequencer for creating new

midi sequences and playing them back. Using midi messages to log played notes

has significant advantages over an ad-hoc solution:

• The recorded query can easily be replayed.

• The query can be saved to a midi file.

• Query standardisation can be done using the existing methods in the

Extractor and the Standardiser.

When the Record button is pressed, a new Sequence containing a single Track

is created, and the Sequencer is set to record any midi messages it receives as

events in this Track. When the user presses a key on the on-screen keyboard, the

key will repaint itself to indicate that it is pressed and will invoke a keyPressed()

method from the keyboard panel. This method uses the key information to create

a new midi message and timestamp. The message is sent to the Synthesizer

4The pitch-only search button is labeled “Search” since initial tests showed that in most
cases a pitch-only search produced better results.

34 CHAPTER 3. IMPLEMENTATION

so that a note is sounded, and to the Sequencer together with the timestamp

so that it is added to the Track. A keyReleased() method does the equivalent

when a key is released. To increase usability keys can be played using either the

mouse or the computer keyboard. The user can stop the recording by pressing the

Stop button or the search buttons. Pressing the Play button will start playback

of the recorded Sequence.

When the search button is pressed, a new KeyboardMultiSearchThread is

created to handle further execution. This allows the GUI to remain respon-

sive while the search is performed in the background. The thread will use the

Extractor and the Standardiser to generate the precise pitch and rhythm ele-

ments of the query, and use them to determine the contour elements. If no query

was recorded or if it is too short an error message is displayed (the minimum

number of notes must be greater than the seed size by at least one so that seeds

can be extracted). Otherwise a new MuSearchClient is instantiated and passed

the Query, a SearchParameters object initialised to default values, and depend-

ing on which of the two search buttons was pressed a pitchOnly boolean. The

client performs the search and invokes displayResults() from the results panel

which is described in section 3.5.4.

3.5.3 The Text Search

3.5.3.1 Overview

The text search allows querying the system by representing melodies as strings

of characters. As such, it requires more musical ability than the keyboard search,

but it is also more flexible and powerful for advanced users.

3.5.3.2 The Text Search GUI

The text search panel consists of two input fields, one for inputting pitch values

and one for rhythm values. It has two search buttons – Search Pitch and Search

Pitch+Rhythm, the former only includes the values from the pitch field in the

search whilst the latter includes the values from both fields. Values must be space

separated, and an Align button is provided to help the user see which pitch value

goes with which rhythm value. Below the text fields there is a status panel for

displaying error messages and a progress bar to indicate search progress. Finally

there is an instructions box which contains example queries and instructions for

using the text search.

3.5. USER INTERFACE 35

3.5.3.3 Making Queries

The text search supports three different query formats. The formats are detailed

in appendix C, and example queries are given in table 3.1. The contour format

in particular is very simple – pitch is represented by W,w,s,x,X corresponding

to big up, little up, same, little down and big down, and rhythm is represented by

<,|,> corresponding to shorter, equal and longer. Thus it is expected to be useful

even for users with little musical experience. Allowing contour-only searches is

possible due to the built in support for contour in the Query and the matching

code.

Query Format Query

Absolute pitch: A A B A D1 C#1 A A B A E1 D1

rhythm: e. s q q q h e. s q q q h

Relative pitch: 0 2 -2 5 -1 -4 0 2 -2 7 -2

rhythm: 0.333 4 1 1 2 0.375 0.3 4 1 1 2

Contour pitch: s w x W x x s w x W x

rhythm: < > | | > < < > | | >

Table 3.1: Different query formats for “Happy Birthday”

The user can choose one of the formats or use a combination of all three in

the same query. I convert the queries from these formats into the standardised

format using the Parser class. The Parser is passed the pitch and the rhythm

entries (or just the pitch for a pitch-only search) as two strings. The pitch string

is converted into pitch tokens and the rhythm into rhythm tokens by looking for

spaces in the string. I then perform a second pass on the tokens to ensure that

they are valid entries. Finally the pitch tokens are converted into pitch intervals

and pitch contours, the rhythm tokens into LogIOIRs and rhythm contours, and

returned in a Query object.

When the user presses one of the search buttons the Query object is passed to a

newly instantiated MuSearchClient which handles the rest of the search process.

Which of the two buttons is pressed determines the value of the pitchOnly

parameter of the search. As before, this process is executed in a new thread so

that the GUI remains responsive while the search is performed.

36 CHAPTER 3. IMPLEMENTATION

3.5.4 Results Panel

The results panel displays the search results in a list. Results are ordered by cost

(the lowest cost gets the highest rank) and then alphabetically by name. The

user can select any of the results from the list and listen to the midi file using the

start and stop buttons in the panel. A result entry includes the artist name and

song title. Displaying the matching cost would not be meaningful to the user,

and instead I display a match percentage indicating the relevance of the result to

the query. The percentage is calculated according to equation 3.3.

percentage = 100 ∗
(

1− cost

worst possible cost

)
(3.3)

3.6 Extensions

In addition to the core project, I have implemented several extensions. As men-

tioned in section 3.4, the client-server architecture extension was implemented

as part of the core project. The other extensions are detailed in the following

sections.

3.6.1 Additional GUI Features

3.6.1.1 Convert to Text

Following initial usability tests users mentioned that it would be useful be able to

view and edit the query they had recorded in the keyboard search by converting

it into text and displaying it in the Text Search in the absolute format. I added

this functionality by creating a Convert to Text button. I first use the Extractor

to convert the recorded sequence into a Melody. From the Melody I can easily

extract the pitch values and convert them into the appropriate characters. I

then use the Standardiser to convert the melody into a target from which I

can retrieve the LogIOIRs. I choose a starting value (e.g. q)5 and add the rest

according to the LogIOIRs.

3.6.1.2 Instrument Selector

I added a set of radio buttons for switching between instrument sounds. The midi

specification defines a “program change” message for changing instrument sound.

Whenever the user selects a different instrument a “program change” message is

5The value is chosen using an algorithm to avoid overflowing the available duration values.

3.6. EXTENSIONS 37

sent to the Synthesizer and the Sequencer with the new instrument number,

so future notes are played with the chosen sound.

3.6.1.3 Save and Load

I added Save and Load buttons so that the user can save a query as a midi

file, and later load it again. The javax.sound.midi library provides methods

for saving a Sequence as a midi file, and getting a Sequence from one. As my

implementation uses midi sequences and message directly, this feature was easy

to add.

3.6.2 Full MIDI File Comparison

I decided to extend the Load functionality so that instead of only loading single-

track midi files generated from queries, the system could load any multitrack

midi file and use it as a query. I load the midi file and separate it into tracks,

and then convert the tracks into Query objects (similar to converting a sequence

recorded with the on-screen keyboard into a Query). Searching for every Query

separately, pooling the results and displaying the top ranking ones would not be

meaningful, since different tracks will give high ranks to different songs, and the

result would be a list of many different songs all with high ranks. To return songs

which match the midi file as a whole I search for all the queries and sum all costs

returned by different queries for the same song. The sum is normalised by the

number of tracks used as queries, so high ranking songs are the ones which match

the midi file in more tracks than others.

As expected, using a file which exists in the database as a query returns the

correct song with 100% match, with all other results under 20%. For a different

midi version of the same song the results depend on the degree of similarity

between the arrangements. For very different arrangements (e.g. piano versus

orchestration) the search is unsuccessful. For more similar arrangements with

roughly the same number of parts the best match score is still low (around 35%),

but the similarity between the arrangements as a whole is significant enough that

the correct song is listed first, with all other results under 20%.

3.6.3 MIDI Controller Support

As a final extension I added support for playing queries using a real midi con-

troller, such as a midi keyboard which connects to the computer via a midi or

USB port. I use the javax.sound.midi library to detect midi controller devices

and use the default controller as a Transmitter. I wrote a custom Receiver

38 CHAPTER 3. IMPLEMENTATION

which routes midi messages from the Transmitter to the Synthesizer and the

Sequencer. The Receiver also checks the messages for note events and instru-

ment changes so that the keys of the on-screen keyboard are highlighted when

the corresponding notes are played on the controller, and the selected instrument

changes in the selector when the instrument is changed through the controller.

Chapter 4

Evaluation

4.1 Overview

In this chapter I will describe how I evaluated the project. As explained in

section 2.4.4.2, I will be evaluating three aspects of the project – usability, search

performance and efficiency.

4.2 Test Corpus

In order to get meaningful test results, the corpus of midi files used to create the

database must be chosen carefully. Firstly, every midi file must be checked to

ensure that it is not corrupted, and that the music corresponds to the title of the

file. Every song must only appear in the database once, and all songs should be

polyphonic and of roughly the same genre. For this purpose I have compiled a

corpus of 1,076 polyphonic midi files of rock and pop songs including 200 songs

by The Beatles. Once added to the database, the songs translate into 6,541

searchable targets. For scalability tests I have compiled several more corpora

with size increasing up to 16,077 midi files resulting in 76,805 searchable targets.

4.3 Data Collection Procedure

The first stage of evaluation was collecting test data. I devised and ran a user test

on 13 participants of varying musical experience, ranging from amateur guitar

players to people with music degrees. The test was divided into a usability

section and a searching section. Due to Java’s current implementation of the

midi libraries, there is a slight delay between sending a midi message and a

note being sounded, depending on the quality of the computer’s sound card. The

39

40 CHAPTER 4. EVALUATION

majority of the usability tests were run on PWF machines with basic sound cards,

resulting in a small yet noticeable delay.

4.3.1 Usability Section

Subjects were given a list of tasks to perform. This included recording queries

on the on-screen keyboard, listening to results, using the different query formats

in the text search and several other tasks. The complete list of tasks is given

in appendix D. Upon completion of the tasks subjects were asked to fill in a

questionnaire, given in appendix E. I observed every subject perform the tasks

and took notes to complement the questionnaire data.

4.3.2 Searching Section

Next, subjects were asked to record queries using the on-screen keyboard. They

were presented with a list of 200 Beatles songs, and were asked to record queries

for songs they can remember from the list. This stage simulates the event where

a user remembers part of a song they have not heard recently, and resulted in

63 “memory” queries saved as midi files. Finally, subjects were asked to listen

to 10 audio recordings of Beatles songs and then record a query for each song.

This stage simulates the event where a user has recently heard a song (e.g. on

the radio or in a live performance), and resulted in 123 “afterplay” queries (some

users did not have time to record queries for all 10 songs). This adds up to a

total of 186 recorded user queries, which I could then use to evaluate the system.

4.4 Usability Evaluation Results

All subjects managed to use the basic features of the project with ease. That is,

they were able (without guidance) to record a query using the on-screen keyboard,

play it back, search for it and listen to the results. This confirms that the GUI

is intuitive enough for a user to just “pick up and use”, as would be expected

from an online search facility. As expected, the Text Search proved to be more

complicated and not all users managed to complete all the related tasks. Here

are the results obtained from analysing the questionnaire data:

• The on-screen keyboard received an average score of 4.8 on a scale of 1 to

6 for comfort. The only comments were about the slight delay which made

playing the rhythm accurately harder.

4.5. QUANTITATIVE RESULTS 41

• There was a slight preference to using the computer keyboard for controlling

the on-screen keyboard over the mouse, suggesting that providing the two

alternative methods is a good idea.

• Most subjects found the instructions for using the text search clear, but

prefer the keyboard search.

• As expected, contour was the preferred query format when using the text

search, with subjects describing it as easier to use, especially when not

entirely sure about the melody. A small number of the more musically

experienced subjects preferred the absolute format as it is closest to musical

notation.

• Most subjects received at least one error message when using the Text

Search, usually due to a format mismatch between the pitch and rhythm

entries. All subjects found the error messages helpful and all but one were

able to correct their mistakes after referring to the instructions.

• Subjects were asked to compare the system to a QBH system in which

queries are sung into a microphone. They were asked to specify whether

using my system would be easier or harder by choosing a value on the the

scale: 1 = much harder, 2 = harder, 3 = slightly harder, 4 = the same,

5 = slightly easier, 6 = easier, 7 = much easier. The mean result was

3.66 but with a standard deviation of 1.93 and answers ranged from 1 to

7. Subjects’ comments indicate that their answer depended very much on

their singing abilities. Some mentioned that my system is probably more

for the musically inclined, but is also a good alternative for people with

poor singing abilities.

4.5 Quantitative Results

4.5.1 Overview

When evaluating search performance of IR systems it is common to use metrics

such as precision and recall. Precision is the proportion of relevant results out of

all the retrieved results, and recall is the proportion of relevant results retrieved

out of all relevant results in the database. In the case of my system however, there

is always only a single relevant result – the specific song the user is searching for.

For this reason it makes more sense to use a metric based on the rank of the

correct song [4], and I use the Mean Reciprocal Rank (MRR). This is similar to

42 CHAPTER 4. EVALUATION

calculating the average rank of the correct song for a set of queries, but is less

sensitive to poor ranking outliers. The formula for calculating the MRR is given

in equation 4.1. n is the number of queries, and ranki is the rank of the correct

song for query i.

MRR =

∑n
i=1

1
ranki

n
(4.1)

For a database containing m songs, the MRR will be a value between 1 and
1
m

, with higher values indicating better search performance. The best MRR value

achieved for a QBH system in [3] is 0.329. Since my system does not suffer query

degradation by the need to perform pitch detection on recorded voice, the MRR

value should be higher and in the success criteria I set a minimum value of 0.5

for the MRR. I also had to address the fact that it is not uncommon for different

songs to have the same match cost for a given query, and thus the same rank.

This means that though the correct song might have a high rank, in practice it

will appear lower down the list of results, because there are other songs with the

same rank which come first alphabetically. To address this I have introduced

another metric which I call the Ordered Mean Reciprocal Rank (oMRR), which

uses the actual position in the results list of the correct song to compute a MRR

value.

System efficiency will be measured by calculating the average search time for

a query. The usefulness of my proposed Seed Search as an indexing method will

be measured by calculating the average number of targets returned by the Seed

Search for the Local Alignment phase (labeled in tables as “#Targets to Search”),

in comparison with the total number of targets in the database. All tests were

performed on the SRCF server which hosts the MuSearch server – a machine with

two Intel R© Dual Core Xeon R© 5130 @ 2GHz with 4MB Cache and 4GB RAM,

running Linux 2.6.17-10 and Java HotSpotTM 64-Bit Server VM.

4.5.2 Initial Results

I started by computing the MRR and oMRR values for a pitch-only search on the

test database of 1076 songs using a seed size of 3 and with the search parameters

set to their default values (full cost = 2, reduced cost = 1, pitch to rhythm ratio

1:1).

The results (shown in table 4.1) are very pleasing, with all MRR and oMRR

values well above 0.5 which is the minimum threshold for success1. As expected,

there is a significant difference (as determined by a t-test with p-value of 0.00042)

1Search efficiency is evaluated in section 4.5.7.

4.5. QUANTITATIVE RESULTS 43

Query Group #Queries MRR oMRR

All queries 186 0.800 0.659

memory 63 0.765 0.627

afterplay 123 0.818 0.675

Table 4.1: Initial results

between the MRR and the oMRR values. Also, I noted that the “afterplay”

queries gave slightly higher results than the “memory” queries. This might be

because the melody was still fresh in the subject’s memory when recording the

query. I used a t-test to compare the reciprocal ranks of queries from both groups,

and discovered that the observed difference was not statistically significant (p-

value of 0.28443), so for the rest of the evaluation I used all the queries combined.

4.5.3 The Effect of Rhythm

Next I measured how including rhythm affects search performance. The results

are shown in table 4.2.

Pitch Only MRR oMRR

true 0.800 0.659

false 0.667 0.594

Table 4.2: The effect of rhythm on search performance

Including rhythm generally degrades the results of the search. This can be ex-

plained by the difficulty of entering very accurate rhythm with the on-screen

keyboard due to the slight delay.

4.5.4 Choice of Seed Size

So far I have been using a seed size of 3. The next stage of the evaluation was

determining the effect of different seed sizes on both search performance and

efficiency. A bigger seed size requires an exact match with a longer segment of

the query, and so it is expected to improve efficiency (by reducing the number of

targets retrieved by the Seed Search) at the cost of degrading search performance

for queries containing mistakes. The results for different seed sizes are displayed

in table 4.3.

44 CHAPTER 4. EVALUATION

S
e
e
d

S
iz

e
P

it
ch

O
n
ly

M
R

R
o
M

R
R

A
v
g
.

S
e
a
rc

h
T

im
e
/
s

A
v
g
.

#
T
a
rg

e
ts

F
ra

ct
io

n
o
f
T
o
ta

l

T
o

S
e
a
rc

h
#

T
a
rg

e
ts

in
D

B

2
tr

u
e

0.
80

1
0.

65
9

0.
47

5
54

15
.2

26
0.

82
7

3
tr

u
e

0.
80

0
0.

65
9

0.
37

2
32

50
.5

59
0.

49
6

4
tr

u
e

0.
79

1
0.

66
4

0.
19

8
15

09
.7

58
0.

23
0

5
tr

u
e

0.
77

7
0.

66
5

0.
11

3
64

7.
98

4
0.

09
9

2
fa

ls
e

0.
66

8
0.

59
0

0.
66

0
54

15
.2

26
0.

82
7

3
fa

ls
e

0.
66

7
0.

59
4

0.
48

0
32

50
.5

59
0.

49
6

4
fa

ls
e

0.
66

4
0.

60
5

0.
25

3
15

09
.7

58
0.

23
0

5
fa

ls
e

0.
66

4
0.

62
0

0.
14

6
64

7.
98

4
0.

09
9

Table 4.3: The effect of seed size on search performance and efficiency

4.5. QUANTITATIVE RESULTS 45

As expected, the number of targets to search drops considerably as the seed

size is increased, which in turn reduces the search time. I noted that the MRR

gradually decreases, but the oMRR is surprisingly increased, which means the

Seed Search gets rid of more irrelevant targets than it does relevant ones. I also

noted that increasing the seed size increases the memory usage and storage re-

quirements of the database. In conclusion, there is a trade-off between efficiency,

resource usage and search performance, and for the rest of the evaluation I use a

seed size of 4.

4.5.5 Search Parameter Optimisation

Next I turned to optimising the search parameters for searches which include

both pitch and rhythm. As there are many search parameters, I decided to focus

on two factors – the optimal pitch to rhythm ratio, and the optimal ratio between

the full costs and the reduced costs when using the same value for all full costs,

and the same value for all reduced costs. I wrote a program Annealing which

uses the Simulated Annealing approach for global optimisation [6]. I divided the

queries into two groups so that the optimisation is performed only on group 1,

and the results can be validated on group 2. The results for the two groups before

optimisation are give in table 4.4

Query Group Full Cost Reduced Pitch to Rhythm MRR oMRR

Cost Ratio

1 2 1 1:1 0.704 0.646

2 2 1 1:1 0.634 0.574

Table 4.4: Results for the groups before optimisation

4.5.5.1 Pitch to Rhythm Ratio

The optimal pitch to rhythm ratio was determined by changing the PITCH FACTOR

and the RHYTHM FACTOR to get the highest MRR and oMRR values. The results

are displayed in figure 4.1.

46 CHAPTER 4. EVALUATION

0
10

20
30

40

0

10

20

30

40
0

0.2

0.4

0.6

0.8

Rhythm FactorPitch Factor

oM
R

R

Figure 4.1: oMRR as a function of the pitch and rhythm factors

The optimal pitch to rhythm ratio was found to be 3:1, and is used in all further

evaluations.

Ratio MRR oMRR

1:1 0.704 0.646

3:1 0.784 0.745

Table 4.5: Before and after pitch/rhythm ratio optimisation

4.5.5.2 Full Cost to Reduced Cost Ratio

The optimal ratio between full costs and reduced costs was deter-

mined by changing two values, one assigned to all full cost parameters

(e.g. SKIP QUERY PITCH INTERVAL COST), and the other to all reduced cost pa-

rameters (e.g. REPLACE RHYTHM CONTOUR COST and REPLAC PITCH OCTAVE COST).

The results are displayed in figure 4.2.

4.5. QUANTITATIVE RESULTS 47

0

5

10

15

0

10

20

30
0

0.2

0.4

0.6

0.8

Reduced CostFull Cost

oM
R

R

Figure 4.2: oMRR as a function of the full and reduced costs

The optimal values are 3 for full cost and 1 for reduced cost.

Full Reduced MRR oMRR

Cost Cost

2 1 0.784 0.745

3 1 0.787 0.761

Table 4.6: Before and after full cost/reduced cost optimisation

Finally I used the optimised parameters on group 2, and validated that they

improve the search results, as seen in table 4.7.

48 CHAPTER 4. EVALUATION

Group Pitch to Rhythm Full Reduced MRR oMRR

Ratio Cost Cost

1 1:1 2 1 0.704 0.646

1 3:1 3 1 0.787 0.761

2 1:1 2 1 0.634 0.574

2 3:1 3 1 0.708 0.683

1+2 1:1 2 1 0.664 0.605

1+2 3:1 3 1 0.742 0.717

Table 4.7: Validation of optimised search parameters

4.5.6 Seed Filtering

I then measured which seeds were the most common in the queries and in the

database. Full seed distributions are given in appendix F. The three most com-

mon seeds in the queries were {0,0,0,0}, {0,0,0,-2} and {0,0,0,-1}. As

these seeds convey little melodic information (all represent the same note being

played at least four times), I discovered that they could be ignored during the

seed search, resulting in a further reduction in the average number of targets to

search, at the cost of only slightly reducing the MRR and oMRR values.

Ignore MRR oMRR #Targets

Seeds to Search

no 0.742 0.717 1509.758

yes 0.733 0.712 951.575

Table 4.8: Results before and after seed filtering

4.5.7 Scalability

Finally, I tested how search performance and efficiency are affected as the size

of the database is increased. I measured the MRR, oMRR, average search time

and number of targets to search for databases of increasing sizes, starting from

6,536 targets (1,076 songs) up to 76,805 targets (16,077 songs). Note that since

the search includes rhythm, these results provide a lower bound on performance.

The results are plotted in figures 4.3–4.7, with trend-lines added.

4.5. QUANTITATIVE RESULTS 49

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

10000

20000

30000

40000

50000

60000

70000

80000

Songs

T
ar

ge
ts

y(x) = m⋅x
m = 4.715
R = 0.992

Figure 4.3: Targets vs Songs

0 10000 20000 30000 40000 50000 60000 70000 80000
0

2000

4000

6000

8000

10000

12000

Targets

A
vg

. #
T

ar
ge

ts
 T

o
S

ea
rc

h

y(x) = m⋅x
m = 0.154
R2 = 0.999

Figure 4.4: Avg. #Targets to Search vs #Targets in DB

50 CHAPTER 4. EVALUATION

0 10000 20000 30000 40000 50000 60000 70000 80000
0

0.5

1

1.5

2

2.5

3

Targets

A
vg

. S
ea

rc
h

T
im

e/
s

y(x) = m⋅x
m = 3.738e−005
R2 = 0.973

Figure 4.5: Avg. Search Time vs #Targets in DB

0 10000 20000 30000 40000 50000 60000 70000 80000

0.75

0.7

0.65

0.6

0.55

0.5

Targets

M
R

R

y(x) = a⋅log(b⋅x)+c
a = −0.045
b = 0.063
c = 1
R2 = 0.982

Figure 4.6: MRR vs #Targets in DB

4.5. QUANTITATIVE RESULTS 51

0 10000 20000 30000 40000 50000 60000 70000 80000

0.75

0.7

0.65

0.6

0.55

0.5

Targets

oM
R

R

y(x) = a⋅log(b⋅x)+c
a = −0.049
b = 0.054
c = 1
R2 = 0.984

Figure 4.7: oMRR vs #Targets in DB

We see that every song produces on average 4.7 targets. The average search

time even for the largest database is well under 5 seconds which meets the success

criteria. Next we note that the Seed Search provides a reduction in the number of

targets to search which is linearly proportional to the size of the database (reduces

to 15% of original size). Though it is not as good as the sub-linear indexing

methods available for metric search spaces, as a solution for the non-metric search

space of the project it is very successful, even for the largest database. The

final two graphs are very encouraging – they show that both the MRR and

oMRR only decrease as O(log(n)) as we increase the size n of the database,

which indicates search performance will remain satisfactory (above 0.5) even for

very large databases.

52 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

5.1 Goals Achieved

Overall I am very satisfied with the outcome of the project. I have successfully

managed to implement a working system which satisfies all the success criteria:

• The MRR (and oMRR) value is well above 0.5 for the test corpus.

• The system can search a database of over 10,000 songs in under 5 seconds.

• Usability tests show the user interface is clear and intuitive.

I have also implemented the extensions of a client-server architecture, support

for a real midi controller, full midi file comparison and additional GUI features.

In addition, I have come up with my own solution to the indexing problem, and

it has proved to be highly satisfactory for the purposes of the project.

5.2 Unresolved Issues

Although the Seed Search proved to be a good practical solution, it is still not

as good as the sub-linear methods which exist for indexing metric search spaces.

This means that in its current state it would not be good enough for very large

databases containing millions of songs. I believe however that through further

research into seed statistics for musical data and melody extraction techniques

my solution could be applicable to very large databases as well.

The slight delay between sending a midi message and sounding a note means

that in most cases including rhythm in the search produces worse results than

when considering only the pitch. Unfortunately this is something which depends

on the internal implementation of the Java libraries and on the quality of the

53

54 CHAPTER 5. CONCLUSION

soundcard used, but as these are two things which are constantly being improved,

it is definitely something that can be resolved.

5.3 Future Extensions

5.3.1 Melodic Extractor

My project only disregards a small number of the tracks in a midi file. Though

this has the advantage of allowing the user to search for any part of a song, it

increases the number of targets produced from every song thus increasing the

search time and memory requirements. A possible extension would be to de-

velop a melodic extractor [9] which identifies the melodic themes which are most

perceptually salient in a song and throws away the rest of the data in the midi

file.

5.3.2 Elaborate Seed Filtering

As mentioned in 5.2, the Seed Search could be improved by devising a more

elaborate seed filtering mechanism which is based on the statistical properties of

musical data. The seeds themselves could also be enhanced, similar to the spaced

seeds used by advanced Bioinformatics algorithms such as Pattern Hunter [7].

5.3.3 Audio input

The project could be extended to support audio input through a microphone

making it a combined QBE and QBH system providing the most flexibility in

query specification, and making it useful for a very wide range of users.

5.4 Final Comments

I enjoyed working on the project very much, and through my work I have devel-

oped a keen interest in music information retrieval. I learned a lot from research-

ing the project and gained new programming skills. I have already found myself

using the project to identify songs, and believe it has real potential for practi-

cal use. I hope to continue developing the ideas presented in this dissertation

and make my own contribution to the development of content based information

retrieval systems.

Bibliography

[1] R. Baeza-Yates and B. Riberto-Neto. Modern Information Retrieval. Addi-

son Wesley and ACM Press, 1999.

[2] T. Bozkaya and M. Ozsoyoglu. Indexing Large Metric Spaces for Similarity

Search Queries. ACM Transactions on Database Systems, 24(3):361–404,

September 1999.

[3] R. B. Dannenberg, W. P. Birmingham, B. Pardo, N. Hu, C. Meek, and

G. Tzanetakis. A Comparative Evaluation of Search Techniques for Query-

by-Humming Using the Musart Testbed. Journal of the American Society

for Information Science and Technology, February 1, 2007.

[4] R.B. Dannenberg and N. Hu. Understanding Search Performance in Query

by Humming Systems. Audiovisual Institute, Universitat Pompeu Fabra

Barcelona, Spain, 2004. 5th International Conference on Music Information

Retrieval.

[5] W.J. Ewens and G. Grant. Statistical Methods in Bioinformatics: An Intro-

duction (Statistics for Biology and Health). Springer, 2 edition, 2005.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598), 1983.

[7] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: Highly Sensitive

and Fast Homology Search. Journal of Bioinformatics and Computational

Biology, 2004.

[8] D. Mazzoni and R. Dannenberg. Melody Matching Directly From Audio. 2nd

Annual International Symposium on Music Information Retrieval, Bloom-

ington, Indiana, USA, 2001.

[9] C. Meek and W.P. Birmingham. Automatic Thematic Extractor. Journal

of Intelligent Information Systems, 2003.

55

56 BIBLIOGRAPHY

[10] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cam-

bridge University Press, Cambridge, UK, 2002.

[11] B. Pardo and W.P. Birmingham. Encoding Timing Information for Musical

Query Matching. Paris, France, 2002. ISMIR Conference Proceedings.

[12] B. Pardo, J. Shifrin, and W. Birmingham. Name That Tune: A Pilot Study

in Finding a Melody From a Sung Query. Journal of the American Society

for Information Science and Technology, 2004.

[13] Hubbard T.L and D.L Datteri. Recognizing the Component Tones of a

Major Chord. The American Journal of Psychology, 114(4):569–589, 2001.

[14] A. Uitdenbogred and J. Zobel. Melodic Matching Techniques for Large

Music Databases. ACM Multimedia, 1999.

Appendix A

Search Parameters

//********** PITCH FIELDS **********

//***** SKIP QUERY VALUES *****

// The default cost of skipping a pitch contour in the query

public int SKIP_QUERY_PITCH_CONTOUR_COST;

// The default cost of skipping a pitch interval in the query

public int SKIP_QUERY_PITCH_INTERVAL_COST;

// The cost of skipping a prima pitch interval in the query

public int SKIP_QUERY_PITCH_PRIMA_COST;

// The cost of skipping an octave pitch interval in the query

public int SKIP_QUERY_PITCH_OCTAVE_COST;

//***** SKIP TARGET VLAUES *****

// The default cost of skipping a pitch intervals in the target

public int SKIP_TARGET_PITCH_INTERVAL_COST;

// The detault cost of skipping a prima pitch interval in the target

public int SKIP_TARGET_PITCH_PRIMA_COST;

// The cost of skipping an octave pitch interval in the target

public int SKIP_TARGET_PITCH_OCTAVE_COST;

//***** REPLACE VALUES *****

// The minimum pitch interval included in the BIG_DOWN contour

public int BIG_DOWN_MIN;

// The maximum pitch interval included in the BIG_DOWN contour

public int BIG_DOWN_MAX;

// The minimum pitch interval included in the LITTLE_DOWN contour

public int LITTLE_DOWN_MIN;

// The maximum pitch interval included in the LITTLE_DOWN contour

public int LITTLE_DOWN_MAX;

// The minimum pitch interval included in the SAME contour

public int SAME_MIN;

// The maximum pitch interval included in the SAME contour

public int SAME_MAX;

// The minimum pitch interval included in the LITTLE_UP contour

public int LITTLE_UP_MIN;

// The maximum pitch interval included in the LITTLE_UP contour

public int LITTLE_UP_MAX;

// The minimum pitch interval included in the BIG_UP contour

public int BIG_UP_MIN;

// The maximum pitch interval included in the BIG_UP contour

public int BIG_UP_MAX;

57

58 APPENDIX A. SEARCH PARAMETERS

// The cost of matching a query pitch contour to a target pitch interval

public int REPLACE_PITCH_CONTOUR_COST;

// The cost of replacing a query pitch

public int REPLACE_PITCH_COST;

// The cost of matching a query pitch to a target pitch, but wrong octave

public int REPLACE_PITCH_OCTAVE_COST;

//********** RHYTHM FIELDS **********

//***** SKIP QUERY VALUES *****

// The cost of skipping a rhythm contour

public int SKIP_QUERY_RHYTHM_CONTOUR_COST;

// The cost of skipping a rhythm ratio

public int SKIP_QUERY_RHYTHM_RATIO_COST;

//***** SKIP TARGET VLAUES *****

// The cost of skipping a rhythm ratio

public int SKIP_TARGET_RHYTHM_RATIO_COST;

//***** REPLACE VALUES *****

// The cost of replacnig a matching contour

public int REPLACE_RHYTHM_CONTOUR_COST;

// The cost of replacing a query rhythm

public int REPLACE_RHYTHM_COST;

//********** COMBINING FIELDS **********

// The factor by which to multiply the pitch cost

public int PITCH_FACTOR;

// The factor by which to multiply the rhythm cost

public int RHYTHM_FACTOR;

//********* SEARCH FIELDS ***********

// The seed size

public int SEED_SIZE = 4;

// The highest cost for any pitch operation

public int MAX_PITCH_COST;

// The highest cost for any rhythm operation

public int MAX_RHYTHM_COST;

Appendix B

Java Code for replaceP itch()

private int replacePitch(Query query, Target target, int i, int j)

{

int pitchCost = 0;

// Calculate the boundaries for the query contour

char queryContour = query.pitchContour[i];

int intervalMax = 0;

int intervalMin = 0;

switch((int)queryContour)

{

case (int)’D’: intervalMin = sp.BIG_DOWN_MIN;

intervalMax = sp.BIG_DOWN_MAX; break;

case (int)’d’: intervalMin = sp.LITTLE_DOWN_MIN;

intervalMax = sp.LITTLE_DOWN_MAX; break;

case (int)’s’: intervalMin = sp.SAME_MIN;

intervalMax = sp.SAME_MAX; break;

case (int)’u’: intervalMin = sp.LITTLE_UP_MIN;

intervalMax = sp.LITTLE_UP_MAX; break;

case (int)’U’: intervalMin = sp.BIG_UP_MIN;

intervalMax = sp.BIG_UP_MAX; break;

}

// Compare to the target interval

int targetInterval = target.pitch[j];

// If the query only contains a pitch contour, look for a contour match

if (query.pitch[i] == Byte.MIN_VALUE)

59

60 APPENDIX B. JAVA CODE FOR REPLACEPITCH()

{

if (targetInterval >= intervalMin && targetInterval<=intervalMax)

{ pitchCost = sp.REPLACE_PITCH_CONTOUR_COST; }

else

{ pitchCost = sp.REPLACE_PITCH_COST; }

}

// Otherwise, look for a pitch interval match

else

{

byte queryPitch = query.pitch[i];

byte targetPitch = target.pitch[j];

// Exact pitch match

if (queryPitch == targetPitch)

{ pitchCost = 0; }

// Out by n octaves

else if ((queryPitch % 12) == (targetPitch % 12))

{ pitchCost = sp.REPLACE_PITCH_OCTAVE_COST; }

// Contour matches

else if (targetInterval >= intervalMin && targetInterval<=intervalMax)

{ pitchCost = sp.REPLACE_PITCH_CONTOUR_COST; }

// Total mismatch

else

{ pitchCost = sp.REPLACE_PITCH_COST; }

}

return pitchCost;

}

Appendix C

Text Search Formats

The text search supports the following formats:

• Absolute – A pitch value is represented by specifying the note letter,

whether the note is sharp of flat and how many octaves above or below

middle C it should be (e.g. A#2). Rhythm is represented by the characters

w,h,q,e,s corresponding to the durations whole, half, quarter, eighth and

sixteenth (quarter = crochet). The user can add a 3 or a . after the

character to make it a triplet or a dotted note respectively.

• Relative – Pitch is represented as intervals (e.g. 2 -3), and rhythm as

ratios (e.g. 1 0.3).

• Contour – Pitch contour is represented by W,w,s,x,X corresponding to big

up, little up, same, little down and big down. Rhythm contour is represented

by <,|,> corresponding to shorter, equal and longer.

The user can choose one of the formats or use a combination of all three in the

same query. Examples are provided in the table overleaf.

61

62 APPENDIX C. TEXT SEARCH FORMATS

Query Format Query

Absolute pitch: A A B A D1 C#1 A A B A E1 D1

rhythm: e. s q q q h e. s q q q h

Relative pitch: 0 2 -2 5 -1 -4 0 2 -2 7 -2

rhythm: 0.333 4 1 1 2 0.375 0.3 4 1 1 2

Contour pitch: s w x W x x s w x W x

rhythm: < > | | > < < > | | >

Combined pitch: A A 2 -2 W -1 C#1 A A B x W x

rhythm: e. s 4 1 | 2 h e. s q | | >

Table C.1: Different query formats for “Happy Birthday”

Appendix D

Task List for Usability Test

MuSearch Experiment

You will now take part in a quick experiment. In front of you is MuSearch, a

search engine for music. In the same way that Google lets you search for web

pages by entering the text those pages might contain, MuSearch lets you search

for a song by entering a musical phrase the song might contain. You have a

mouse and keyboard, and you may use both as you see fit.

You will now be presented with a short series of tasks to perform. Once

you have completed the tasks you will be asked to answer a short questionnaire.

Note: I can not help you during the experiment unless the task explicitly

mentions it. The website contains instructions which you should refer to if

uncertain about how to complete a task. If you are stuck on a task, or if you

have completed it, let me know before going on to the next task.

It would be helpful if whilst performing the tasks you explain your actions and

why you chose to take them.

Tasks

1. Play the beginning of the song “Twinkle Twinkle Little Star” (this is not a

test of your memory, if you do not remember the song ask me and I’ll play

it to you).

2. If you used the mouse – can you use something else to play the song?

3. Search for the song “Twinkle Twinkle Little Star”

63

64 APPENDIX D. TASK LIST FOR USABILITY TEST

4. Listen to the results

5. Did your search take rhythm into account? If not, can you do so?

6. Search for the Beatles song “Yesterday” (again, ask me if you do not re-

member how it goes)

7. Save your query

8. Restore your query and search again

9. Delete the last note from your query by editing it in text mode

10. Search for the text query you have produced, including pitch and rhythm

11. If you have not already: search for “Twinkle Twinkle” using the text search

12. If you only used pitch, include rhythm in your search as well

13. If you did not use contour in your search, try it now

Appendix E

Usability Test Questionnaire

Details

Please fill in your details below. They are guaranteed to be kept confidential

without your explicit permission to use them for written work (my dissertation).

Please tick the box at the end of a line if you agree for this information

to be included in the dissertation:

Name: . �
Occupation: . �
Musical instruments played (please include grade if applicable): �
Academic music qualifications: .�
On a scale of 1 (very unconfident) to 5 (very confident), how confident are you

playing the piano: . �
On a scale of 1 (very unconfident) to 5 (very confident), how confident are you

using a computer:. .�
On a scale of 1 to 5, how familiar are you with the Beatles: �

Questions

1. On a scale of 1 to 6 (where 1 is very uncomfortable, and 6 is very com-

fortable), how comfortable was it to play a song on the on-screen keyboard?

2. Whats uncomfortable about it?

65

66 APPENDIX E. USABILITY TEST QUESTIONNAIRE

3. Did you manage to play on the on-screen keyboard using the computer

keyboard instead of the mouse? If yes, is it more/less comfortable?

4. Very briefly, would you change anything in the keyboard search?

5. Are the instructions for using the text search clear? If not, which part was

most unclear?

6. Would you ever use the text search in preference to the keyboard search?

7. In the text search, which of the three input methods would you prefer for

entering pitch? And rhythm? Please state why.

8. Very briefly, would you change anything in the text search?

9. Did you get any error messages during your search? If yes, were they useful?

10. On the scale: 1- much harder, 2- harder 3- slightly harder, 4- about the

same, 5- slightly easier 6- easier 7- much easier, how would you compare

using this search to a search facility that would let you sing into a

microphone instead?

11. Briefly comment on how MuSearch and the system described in question

10 would otherwise compare:

12. Any final comments:

Thank You!

Appendix F

Seed Distributions

0

5

10

15

20

25

30

35

40

45

50

Top 12 Most Common Seeds in Query Set

O
cc

ur
re

nc
es

 in
 Q

ue
ry

 S
et

0,
0,

0,
0

0,
0,

0,
−2

0,
0,

0,
−1

0,
−2

,−
2,

−1

0,
−1

,−
2,

−2

0,
0,

−2
,−

2

0,
−2

,−
1,

−2

0,
0,

−1
,−

2

−2
,4

,−
2,

−2

−2
,−

2,
4,

−2

0,
0,

0,
5

0,
0,

5,
0

67

68 APPENDIX F. SEED DISTRIBUTIONS

0

5

10

15

20

25

30

35

40

45

50

All Seeds in Query Set

O
cc

ur
re

nc
es

 in
 Q

ue
ry

 S
et

0

500

1000

1500

2000

2500

3000

3500

O
cc

ur
re

nc
es

 in
 D

B

Top 12 Most Common Seeds in DB

0,
0,

0,
0

0,
0,

0−
2

0,
0,

0,
2

2,
0,

0,
0

−2
,0

,0
,0

0,
0,

−2
,0

5,
0,

0,
0

0,
0,

2,
0

0,
−2

,0
,0

0,
2,

0,
0

0,
0,

0,
−1

1,
0,

0,
0

0

500

1000

1500

2000

2500

3000

3500

All Seeds in DB

O
cc

ur
re

nc
es

 in
 D

B

Appendix G

Project Proposal

Computer Science Part II Project Proposal

Query By Humming Search Engine

Originator: Justin J. Salamon

19th October 2006

Special Resources Required

Permission to carry out tests on human subjects

Filespace on my PWF account

Test data – collection of (MIDI) files

Server – my own PC or SRCF machine

My own PC (2000MHz AMD Athlon64, 512Mb RAM, 80Gb Disk, Windows XP

Pro/ Linux Fedora Core 5 dual boot).

Project Supervisor: Dr D. J. Greaves

Project Supervisor: Martin Rohrmeier

Director of Studies: Prof L. C. Paulson

Project Overseers: Dr A. F. Blackwell & Dr I. J. Wassel

69

70 APPENDIX G. PROJECT PROPOSAL

Introduction

It is often the case that a user wishes to find information about a musical piece,

when they know nothing about it other than remembering part of the music, such

as a verse or chorus. This problem is tackled by systems which use a Query By

Humming (QBH) approach – the user provides a short input to the system (for

example by humming, whistling, playing on an on-screen keyboard etc.), and the

system then tries to find a match in a collection of known pieces.

QBH systems do exist, however it is very much an ongoing topic of research,

and there is room for improvement. The aim of the project is to produce a QBH

system, and evaluate its performance and usability.

Work that has to be done

The project breaks down into the following main sections:

1. Research into current QBH techniques. This will lead to the choice of a

specific technique to implement, and the consideration of possible alter-

ations/improvements. The key choices that need to be made during this

phase are choice of query format and input method, selection of search al-

gorithm, and a way of managing the data. A programming language and

development environment must also be selected, a possible candidate being

Java, using the Eclipse IDE.

2. Implementation. The key component of the system is the search unit, and

it will require a significant amount of research and programming effort.

The query format should be some form of symbolic music representation,

and the input method is likely to initially be a simple text query of that

format. This should form the basis for a later GUI based input method

(e.g. an on-screen keyboard). The searchable collection of music needs to

be managed, and the research phase could potentially lead to the design

and implementation of a database. Acquiring the actual test data will also

require thought and effort, and could potentially take a considerable amount

of time (see resources section below). Once the search unit is complete, a

user interface for performing the search more easily will be created. It

should be kept simple and intuitive, requiring careful thought and design.

3. Evaluation of system. From a performance aspect, the project needs to

be evaluated as an information retrieval system. This will be done using

information retrieval evaluation methodologies.

71

The project must also address the issues of user interface and usability.

HCI techniques will be used to evaluate the system, including comparison

with existing systems, and evaluation of the project on it’s own.

4. Extension: User input method – support use of a MIDI device (such as a

MIDI keyboard) to create the search query.

5. Extension: User input method – could be extended further by supporting

audio input (such as the user singing into a microphone). This is in itself a

very hard task, and one which is unlikely to be achievable in a short amount

of time.

6. Extension: Client-Server architecture – the program could be extended

to provide an online version accessible from a web browser, which would

receive the user query and display results. It would communicate with a

server containing the searchable corpus, and performing the actual search.

Starting Point

The idea for the project is my own, and does not rely on some existing work base.

In other words – the project will be developed from the ground up. The topic

of this project is an active area of research, and so I will also have to read the

existing literature to get acquainted with the current techniques and approaches

to QBH searching, before I can begin work on the project. This also means that

though there are research systems in existence, the problem of QBH searching is

far from solved, and problems to which I will have to find my own solution are

likely to present themselves.

I have a fair amount of musical experience, including playing, composition

and arrangement, but I have not done any work on music information retrieval

before.

Resources

• I will be working on my own machine. Depending on the language chosen

for the project (during the initial research phase) I will use a relevant IDE

(such as Eclipse for Java), and possibly some freely available user interface

design and creation tools.

72 APPENDIX G. PROJECT PROPOSAL

• As part of my backup plan, the project will be synced to a cvs/svn reposi-

tory on my PWF filespace. The project will also be backed up periodically

on CDs.

• If the extension of client-server architecture is implemented, I will need a

server machine. This can be my personal machine, or the SRCF machine,

on which I have an account.

• The project will be evaluated by people who are the intended end users of

the system.

• I will need to compile a corpus of music to use as test data, and this will

be in MIDI format. There are currently no reliable algorithms to find the

perceptually salient melody from a MIDI file – so, the project requires a

well-prepared (or hand-prepared) corpus or a MIDI database consisting of

one particular style which allows for sufficient assumptions to automatically

extract melodic cues. There are collections of MIDI files freely available

online, and so if there are collections which are deemed appropriate for the

project they will be used, but I will potentially have to prepare a test corpus

myself.

Success criteria

The core of this project is the design and implementation of a successful search

algorithm. As a result, the key features of the project, which should be completed

successfully are:

• Simple and efficient user input – the symbolic music query should be suf-

ficient to perform all relevant queries, and sufficiently robust to overcome

basic user inaccuracies such as missing or erroneous notes, key modulation

and rhythmic mistakes. It should also be designed so that additional user

input methods (such as on-screen keyboard) can be efficiently and success-

fully translated into a symbolic query.

• Search unit: should successfully return “relevant” results for a given query.

The problem at hand is still a topic of research, as are the existing QBH

systems. This means that it is not possible to provide numeric values for

desired evaluation metrics such as precision and recall before the research

phase of the project. Nonetheless, it is clear that these values should in-

dicate that the system is sufficiently good to provide a service users would

73

consider useful. Note also that corpus size is likely to be limited due to the

required specifications of the test data, but it should be large enough to

provide a useful account of performance.

• Basic single machine architecture and UI: the end result should have a

simple and intuitive user interface, and display the search results clearly.

Note that as the input method is likely to involve construction of a symbolic

musical query, by playing or by some GUI based method (but probably not

by singing), the system is not aimed at users with no musical background

at all, and basic playing capabilities are expected from potential users.

74 APPENDIX G. PROJECT PROPOSAL

Timetable

Michaelmas term

Package 1 (Research & Design): 21st Oct – 3rd Nov

• Research into currently applied QBH techniques

• Decide on user input method and query format, search algorithm and data

management

• Decide on programming language and environment, architecture

Package 2 (Research & Design): 4th – 17th Nov

• Continue research

• High level design of architecture and unit interfaces

• High level design of user interfaces

Package 3 (Implementation): 18th Nov – 1st Dec

• Compile music corpus and develop database

• Develop input unit

Lent term

Package 4 (Implementation): 16th – 29th Jan

• Develop search algorithm and unit

Package 5 (Implementation and Progress Report): 30th Jan – 12th

Feb

• Continue work on search unit

• Create basic user interface to obtain system in working state

• Run some initial usability tests

• Write progress report

Package 6 (Implementation): 13th – 26th Feb

• Make modifications in light of test results

75

• Complete user interface

• Implement possible extensions

• Leave time to make up for possible underestimates of previous packages

Package 7 (Implementation & Evaluation): 27th Feb – 12th Mar

• Run performance tests

• Run user evaluation tests

• Finalise code

Package 8 (Dissertation): 13th Mar – Easter vacation

• Plan and start writing dissertation

Easter term

Package 9 (Dissertation): 24th Apr – 7th May

• Write dissertation

Package 10 (Dissertation): 8th – 17th May

• Finish dissertation

