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ABSTRACT

We present SONYC-UST-V2, a dataset for urban sound tag-
ging with spatiotemporal information. This dataset is aimed for
the development and evaluation of machine listening systems for
real-world urban noise monitoring. While datasets of urban record-
ings are available, this dataset provides the opportunity to investi-
gate how spatiotemporal metadata can aid in the prediction of ur-
ban sound tags. SONYC-UST-V2 consists of 18510 audio record-
ings from the “Sounds of New York City” (SONYC) acoustic sen-
sor network, including the timestamp of audio acquisition (at the
hour scale) and location of the sensor (at the urban block level).
The dataset contains annotations by volunteers from the Zooniverse
citizen science platform, as well as a two-stage verification with
our team. In this article, we describe our data collection procedure
and propose evaluation metrics for multilabel classification of ur-
ban sound tags. We report the results of a simple baseline model
that exploits temporal information.

Index Terms— Audio databases, Urban noise pollution, Sound
event detection, Spatiotemporal context

1. INTRODUCTION

Often in machine listening research, researchers work with datasets
scraped from the internet, disconnected from real applications, and
devoid of relevant metadata such as when and where the data were
recorded. However, this is not the case in many real-world sensing
applications. In many scenarios, we do know when and where the
data were recorded, and this spatiotemporal context (STC) metadata
may inform us as to what sounds we may expect to hear in a record-
ing. For example, in New York City you are more likely to hear
an ice cream truck by the park at 3pm on a Saturday in July than
you are by a busy street at rush hour on a Tuesday in January; how-
ever, you are more likely to hear honking, engines, and sirens on
that Tuesday. But, knowledge of a thunderstorm that Saturday af-
ternoon in July would reduce your expectation to hear an ice cream
truck and could also help you disambiguate between the noise of
heavy rain and that of a large walk-behind saw.

Thus, we believe spatiotemporal information may be informa-
tive in sound event detection. However, few works have exploited
this information for urban sound tagging [1] or even sound tagging
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Figure 1: Overview of a system that exploits spatiotemporal infor-
mation for urban sound tagging.

in general. We hypothesize that one of the main reasons for this
is the lack of available data that conveys audio and temporal and
spatial metadata.

In this article, we introduce SONYC-UST-V2, a dataset for ur-
ban sound tagging with spatiotemporal information,1 which con-
tains 18510 annotated 10 s recordings from the SONYC acoustic
sensor network and which served as the dataset for the DCASE
2020 Urban Sound Tagging with Spatiotemporal Challenge2. Each
recording has been annotated on a set of 23 “tags”, which was de-
veloped in coordination with the New York City Department of En-
vironmental Protection (DEP) and represents many of the frequent
causes of noise complaints in New York City. In addition to the
recording, we provide identifiers for the New York City block (lo-
cation) where the recording was taken as well as when the record-
ing was taken, quantized to the hour. This information alone can be
used to help a tagging model learn the “rhythm” of the city, but it
can also be used query and join external datasets that can provide
additional contextual information, e.g. weather, traffic, holidays,
land use, city permits, and social data—all of which are available
through rich, public datasets. We hope this data and task can pro-
vide a test bed for investigating these ideas for machine listening.

1Download the data at https://doi.org/10.5281/zenodo.3873076.
2http://dcase.community/challenge2020/task-urban-sound-tagging-

with-spatiotemporal-context.

https://doi.org/10.5281/zenodo.3873076
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Detection and Classification of Acoustic Scenes and Events 2020 2–3 November 2020, Tokyo, Japan

2. PREVIOUS WORK

SONYC Urban Sound Tagging (SONYC-UST, referred to from
here on as SONYC-UST-V1) is a dataset for the development and
evaluation of machine listening systems for real-world urban noise
monitoring [2]. It was used for the Urban Sound Tagging chal-
lenge in DCASE 2019, and consists of 3068 audio recordings from
the SONYC acoustic sensor network [3]. This acoustic network
consists of more than 50 acoustic sensors deployed around New
York City and has recorded 150M+ 10-second audio clips since its
launch in 2016. The sensors are located in the Manhattan, Brooklyn,
and Queens boroughs of New York, with the highest concentration
around New York University’s Manhattan campus (see Figure 5).
To maintain the privacy of bystanders’ conversations, the network’s
sensors are positioned for far-field recording, 15–25 feet above the
ground, and record audio clips at random intervals.

The SONYC-UST-V1 dataset contains annotated training, val-
idation, and test splits (2351 / 443 / 274 recordings respectively).
These splits were selected so recordings from the same sensors
would not appear in both the training and validation sets, and such
that the distributions of labels were similar for both the training and
validation sets. Finally, the test set is not disjoint in terms of sen-
sors, but rather it is disjoint in time—all recordings in the test set
are posterior to those in the training and validation sets.

The recordings were annotated by citizen volunteers via the
Zooniverse citizen science platform [4, 5] and were followed by
a two-step verification by our team in the case of the validation and
test splits. In Zooniverse, volunteers weakly tagged the presence
of 23 fine-grained classes that were chosen in consultation with the
New York DEP. These 23 fine-grained classes are then grouped into
eight coarse-grained classes with more general concepts: e.g., the
coarse alert signals category contains four fine-level categories: re-
verse beeper, car alarm, car horn, siren. Recordings that are most
similar to a small set of exemplary clips from YouTube for each
sound class in our taxonomy were selected for annotation. We refer
the interested reader to [2] for further details about the class taxon-
omy and the similarity measure used for data selection.

3. DATA COLLECTION

Since the release of SONYC-UST-V1, we have continued collecting
audio recordings from our acoustic sensor network and Zooniverse
volunteers have continued to annotate these recordings. SONYC-
UST-V2 includes a total of 18510 annotated recordings from 56
sensors, a small sample of the 150M+ recordings that the SONYC
acoustic sensor network has collected. The method for selecting
which recordings to annotate has evolved over time. Initially, we
sampled recordings as we did for V1, i.e. recordings that were
most similar to a small set of exemplary clips from YouTube for
each sound class in our taxonomy [2]. Subsequently, we sampled
recordings using an batch-based active learning procedure in which
a multi-label classifier was trained with all available annotations at
that time. The model then predicted the class presence for unla-
beled recordings, and recordings with class probabilities above a
low fixed threshold were then clustered with MiniBatch K-Means
[6]. For each class, recordings were evenly sampled from each clus-
ter to obtain a diverse sample, with more recordings sampled for
classes with low representation in the dataset. Batch sizes typically
varied between 1000–2000 recordings. We sampled the test set with

yet another sampling procedure. For this set, a random sample of
10000 recordings was selected from the set of unlabeled SONYC
recordings. This was reduced to a diverse subset of 1000 recordings
selected with a determinantal point process (DPP) using the DPPy
package [7] and OpenL3 embeddings [8] as the representation. This
set was reduced further to adhere to our privacy criteria outlined in
Section 4.

Each recording in SONYC-UST-V2 has been annotated by
three different Zooniverse volunteers in the same manner as
SONYC-UST-V1, i.e. on the both the presence and proximity of the
23 fine-level and 8 coarse-level urban sound tags from the SONYC-
UST Taxonomy [2].

As in SONYC-UST-V1, a subset of the recordings have an-
notations verified by the SONYC team in a two-step verification
process. To create verified labels, we first distributed recordings
based on coarse-level sound category to members of the SONYC
research team for labeling. To determine whether a recording be-
longed to a specific category for the validation process, we selected
those that had been annotated by at least one Zooniverse volun-
teer. Two members of the SONYC team then labeled each category
independently. Once each member had finished labeling their as-
signed categories, the two annotators for each class discussed and
resolved label disagreements that occurred during the independent
annotation process. Lastly, a single SONYC team member listened
to all of the recordings to ensure consistency across coarse-level
categories and to catch any classes overlooked by the crowdsourced
annotators. 1380 of the recordings have verified annotations—716
recordings from the SONYC-UST-V1 test and validation sets and
664 new recordings which comprise the SONYC-UST-V2 test set.

In SONYC-UST-V2 we continue our practice of defining train-
ing and validation sets that are disjoint by sensor and a test set that is
temporally displaced to test generalization in a typical urban noise
monitoring scenario. While the dataset contains recordings from
2016–2019, only the test set contains recordings from the latter two
thirds of 2019. To capitalize on the effort put into the verified sub-
sets in SONYC-UST-V1, we build upon the existing training and
validation sensor split, growing each, while keeping the V1 split still
intact. However, since the SONYC-UST-V1 test set was not limited
to the validation sensor split nor were subsequent crowdsourced an-
notations limited to recordings in the training sensor split, we now
have verified annotations for recordings in the training sensor split
and crowdsourced-only annotations for recordings in the validation
sensor split, see Figure 2. All of this data has been included for
completeness. However, when training the baseline model (see Sec-
tion 6), we limit the training set to only the crowdsourced annota-
tions in the training sensor split, and the validation set to only the
verified annotations int he validation sensor split. See Figure 3 for
the coarse-level class distribution of these recording splits.

Annotating urban sound recordings is a particularly difficult
task. Sound events may be very distant with low signal-to-noise ra-
tios, yet still audible. In addition, without visual verification, many
sound events can be difficult to disambiguate. To capture this uncer-
tainty, annotators are allowed to provide “incomplete” annotations,
providing only the coarse-level class when they are unsure of the
fine-level class (e.g. “Other/unknown engine”). Due to this difficult
task, the inter-annotator agreement of the crowdsourced annotations
as measured by Krippendorff’s α [9] is rather low (0.36). Thus,
SONYC-UST-V2 includes all of the individual crowdsourced and
verified annotations, and we encourage users of the dataset to ex-
plore annotation aggregation strategies that model and incorporate
annotator reliability. Since that is out of scope of this article, we
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Figure 2: Data splits in the dataset. There is overlapping of sen-
sors (location) between training, validation, and test. The test data
is temporally dislocated from training and validation to test gener-
alizability over time.

use a simple approach of minority vote for our baseline model and
analysis, i.e. a class is marked as present in the aggregate if at least
one annotator marks it present. In previous work with Zooniverse
annotators [10], we have found this strategy increases recall without
significantly decreasing precision. In Table 1, we evaluate Zooni-
verse annotations aggregated with minority vote against the verified
annotations in the test set using the metrics outlined in Section 5.
These results are likely representative of good model performance
when only a simplistic annotation aggregation method is used.

4. SPATIOTEMPORAL CONTEXT INFORMATION (STC)

The unique characteristic of this dataset is the inclusion of spa-
tiotemporal context information, which informs where and when
each example was recorded. To maintain privacy, we quantized the
spatial information to the level of a city block, and we quantized
the temporal information to the level of an hour. We also limited
the occurrence of recordings with positive human voice annotations
to one per hour per sensor. For the spatial information, we have
provided borough and block identifiers, as used in NYC’s parcel
number system known as Borough, Block, Lot (BBL) [11]. This
a common identifier used in NYC datasets, making it easy to relate
the sensor data to other city data such as PLUTO [12] and more gen-
erally NYC Open Data [13], which contain information regarding
land use, construction, transportation, noise complaints, and more.
For ease of use with other datasets, we’ve also included the latitude
and longitude coordinates of the center of the block. Figures 4 and
5 are distributions of the recordings in time and space.

5. EVALUATION METRICS

SONYC-UST-V2 includes labels at two hierarchical levels, coarse
and fine (cf. [2] for details about the taxonomy), and models are
evaluated independently against the labels at each level. Since some
of the fine-level classes can be hard to label, even for human experts,
a fraction of the samples in SONYC-UST-V2 only have coarse la-
bels for some sound events. For example, a distant engine sound
may be too ambiguous to label as a small engine, a medium en-
gine or a large enging (i.e., fine labels), but can still tagged with
the coarse label engine of uncertain size. For such cases, we use a
tag coarsening procedure that leverages the hierarchical relationship

Figure 3: SONYC-UST tag distribution normalized for each record-
ing split, in decreasing order of frequency in the train split. The
shades of blue indicate how many annotators tagged the class in
a training set recording, i.e. darker shades of blue indicate higher
annotator agreement.
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Figure 4: Distribution of dataset recordings per hour of the day,
day of the week, and week of the year.
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Figure 5: Map of SONYC-UST-V2 sensor locations, many of
which are located in Manhattan’s Greenwich Village neighborhood
(see inset).

between the fine and coarse labels in our taxonomy to obtain perfor-
mance estimates for fine labels in the face of annotator uncertainty
(cf. [2] for further details about this procedure).

For each of the two levels, we compute three metrics: macro-
averaged AUPRC, micro-averaged AUPRC, and label-weighted
label-ranking average precision (lwlrap) [14]. We use the first as
the primary performance metric, and the second as a secondary
metric to gain further insight into the performance of each system.
Macro-averaged AUPRC provides a measure of performance across
all classes independently of the number of samples per class, while
micro-averaged AUPRC is sensitive to class imbalance.

Finally, lwlrap measures the average precision of retrieving a
ranked list of relevant labels for each test clip. It is a generalization
of the mean reciprocal rank measure for evaluating multi-label clas-
sification, which gives equal weight to each label in the test set (as
opposed to each test clip). The metric has been widely adopted in
the DCASE community over the past year.

6. BASELINE SYSTEM

For the baseline model, we use a multi-label multi-layer perceptron
model, using a single hidden layer of size 128 (with ReLU non-
linearities), and using AutoPool [15] to aggregate frame level pre-
dictions. The model takes in as input audio content, spatial context,
and temporal context.

Audio content is given as OpenL3 [8] embeddings (with
content type="env", input repr="mel256", and
embedding size=512), using a window size and hop size of
1.0 second (with centered windows), giving us 11 512-dimensional
embeddings for each clip in our dataset. Spatial context is given
as latitude and longitude values, giving us two values for each
clip in our dataset. Temporal context is given as hour of the day,
day of the week, and week of the year, each encoded as a one
hot vector, giving us 83 values for each clip in our dataset. We
z-score normalize the embeddings, latitude, and longitude values,
and concatenate all of the inputs (at each time step), resulting in an
input size of 597.

Estimator: Annotators Model w/ STC Model w/o STC
Level: F C F C F C
Overall
Macro-AUPRC 0.56 0.69 0.44 0.49 0.43 0.49
Micro-AUPRC 0.60 0.75 0.62 0.71 0.62 0.71
LWLRAP 0.62 0.78 0.72 0.83 0.73 0.83
AUPRC
Engine 0.57 0.82 0.57 0.84 0.59 0.84
Mach. imp. 0.35 0.48 0.19 0.32 0.18 0.30
Non-mach. imp. 0.60 0.60 0.58 0.60 0.59 0.61
Powered saw 0.14 0.37 0.16 0.11 0.12 0.12
Alert signal 0.74 0.82 0.45 0.40 0.44 0.39
Music 0.53 0.75 0.41 0.52 0.41 0.54
Human voice 0.78 0.91 0.88 0.92 0.88 0.93
Dog 0.79 0.79 0.26 0.22 0.24 0.23

Table 1: The performance of the Zooniverse annotations (using mi-
nority vote aggregation) and the baseline classifier with and without
STC as compared the the ground-truth annotations for the test split
on the coarse (C) and fine (F) levels.

We use the weak tags for each audio clip as the targets for each
clip. For the training data (which has no verified target), we count a
positive for a tag if at least one annotator has labeled the audio clip
with that tag (i.e. minority vote). Note that while some of the audio
clips in the training set have verified annotations, we only use the
crowdsourced annotations. For audio clips in the validation set, we
only use annotations that have been manually verified.

We train the model using stochastic gradient descent to mini-
mize binary cross-entropy loss, using L2 regularization (weight de-
cay) with a factor of 10−5. For training models to predict tags at
the fine level, we modify the loss such that if “unknown/other” is
annotated for a particular coarse tag, the loss for the fine tags corre-
sponding to this coarse tag are masked out. We train for up to 100
epochs, using early stopping with a patience of 20 epochs using loss
on the validation set. We train one model to predict fine-level tags,
with coarse-level tag predictions obtained by taking the maximum
probability over fine-tags predictions within a coarse category. We
train another model only to predict coarse-level tags.

Table 1 presents the results of the baseline model trained with
and without spatiotemporal context. The baseline model’s perfor-
mance is quite low and does not seem to benefit from the inclusion
of STC. However, its inclusion of STC and its aggregation of anno-
tations are both rather naive. We hope this simply provides a start-
ing point for researchers to explore more sophisticated approaches
that better leverage the unique aspects of this data and incorporate
additional contextual data to aid in generalizability.

7. CONCLUSIONS

SONYC-UST-V2 is a multi-label dataset for urban sound tagging
with spatiotemporal context information. It consists of 18510 audio
examples recorded in New York City between 2016 and 2019 with
weak (i.e. tag) annotations on urban sound classes, as well as meta-
data on where and when each audio example was recorded. We be-
lieve STC is a rich source of information for sound tagging that has
yet to be adequately explored and could potentially aid models in
the challenging task of tagging real-world urban sound recordings.
This dataset is the first-of-its-kind that we are aware of and will
provide researchers with material for exploring the incorporation of
spatiotemporal context (STC) information into sound tagging.
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