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ABSTRACT

Content-based Music Informatics includes tasks that involve estimating the pitched content of music, such as
the main melody or the bass line. To date, the field lacks a good machine representation that models the human
perception of pitch, with each task using specific, tailored representations. This paper proposes factoring pitch
estimation problems into two stages, where the output of the first stage for all tasks is a multipitch contour
representation. Further, we propose the adoption of pitch contours as a unit of pitch organization. We give a
review of the existing work on contour extraction and characterization and present experiments that demonstrate
the discriminability of pitch contours.

1 Introduction

Content-based Music Informatics includes the extrac-
tion of semantically meaningful information from mu-
sic audio signals. A class of these problems involve
estimating information about the pitch content in mu-
sic, such as melody extraction [1], bass tracking [2], or
multiple- f0 tracking [3]. Figure 1 illustrates the pitch
content in an excerpt of pop music, with all the pitches
corresponding to a particular instrument highlighted in
the same color. Pitch content is often represented in the
form of “notes”, with a duration, center frequency, and
amplitude. However, this representation is incomplete:
humans perceive pitch not only as static combinations
of harmonically related sinusoids, but also as continu-
ous, time-varying trajectories or streams [4].

Factoring complex problems into a cascade of simpler

problems is a well-worn strategy that has been suc-
cessfully used in both speech and music; factorization
allows each component of the system to solve a simpler
problem than a single end-to-end model would have
to. Typically, problems are broken down into semanti-
cally meaningful stages based on domain knowledge.
For example, chord recognition models often rely on
intermediate pitch representations such as chroma [5]
or even guitar fretboard shapes [6]. Cover song iden-
tification methods are typically based on chroma, tim-
bre, and melody estimations [7]. Many approaches to
melody and bass line estimation use pitch contours as
a mid-level representation [1].

In this paper, we present a case for factoring problems
involving estimating and characterizing pitch content
in musical audio into two stages, where the mid-level
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Fig. 1: Pitch contours for every source in an excerpt of pop
music. Contours for a single source are drawn in the
same color. The main melody line is drawn with a
thicker line; from 0 to 15 seconds the main melody is
in the clean electric guitar, and after in the (yellow)
vocal line.

representation in this factorization are pitch contours.
We review the strengths and weaknesses in their esti-
mation, and explore what can be achieved with pitch
contours estimated from isolated sources for a variety
of tasks. We discuss what can be achieved when con-
tours are estimated from polyphonic audio, and finally,
propose avenues for future work in pitch estimation
tasks. The code used in this paper is available online
for reproducibility 1.

2 Motivation

2.1 Why Factored Systems?

With the growing popularity of deep learning architec-
tures, a number of Music Informatics systems have
been proposed that perform end-to-end learning to
avoid the potentially sub-optimal feature extraction
stage. However, it is important to note that deep learn-
ing architectures can be applied to “factored” problems
too, and they need not solve the problem end-to-end.
Furthermore, there is little data available for training
pitch estimation tasks [8], making end-to-end systems
infeasible, as they require extremely large amounts of
labeled data. When large amounts of data are not avail-
able, an explicitly-defined mid-level representation can
be extremely useful because it constrains the number
of free parameters in a system, inherently requiring less
data to fit the model. This is especially true when the
mid-level representation is known to be meaningful, if
not necessary, to the task at hand.

1github.com/rabitt/aes-semantic-audio-2017

End-to-end approaches to automatic speech recogni-
tion (ASR) are being explored [9], however, these mod-
els, while promising, have not yet matched the per-
formance of state-of-the-art factored systems despite
being trained on 10,000 hours of labeled speech. The
speech community has historically relied on a factored
model for automatic speech recognition (ASR), estimat-
ing phonemes as an intermediate step in transcribing
text from audio [10], and systems built upon this fac-
torization remain state-of-the-art today. Half of the
problem—predicting phonemes from audio—is esti-
mated with one type of model, and the second half (pre-
dicting sentences from phonemes) is estimated from
another. Phoneme recognition is a task that does not
require large scale semantic models—phonemes can
be reliably estimated from relatively short segments of
audio without explicit knowledge of sentence structure
or the language being spoken. Once the probabilities
for each phoneme are predicted from audio, a second
model built to capture sequence structures relies on
the phoneme probabilities as input. For example, the
phoneme sequence “r-eh-d” can be written “red” or
“read”; in a factored model the output of the phoneme
transcription portion is the same for both cases, and the
language portion need only infer which spelling is cor-
rect given the phoneme sequence and the surrounding
context. Without factorization, a single model needs to
infer the word and its context directly from the audio.

2.2 Why Pitch Contours?

An ideal mid-level representation for pitch estimation
tasks should have several characteristics. First and fore-
most, it must be complete, in that all the pitched content
contained in the audio signal is reflected in the repre-
sentation. For example, it should include the pitches
of all instruments in a musical piece as illustrated in
Figure 1. Second, unlike notes, it should maintain the
variations in pitch and amplitude over time in order to
capture musical phenomena such as vibrato, bends or
melismas. Finally, it should group pitch content into
meaningful semantic units that reflect the grouping a
human might create.

A representation that captures all pitched content ben-
efits multiple tasks, including melody extraction, bass
tracking, vocal f0 tracking, multiple- f0 tracking, music
transcription, source separation, and even tasks such as
chord identification. In order for such a representation
to be useful for multiple tasks, it must be a “multi-
pitch" representation, i.e., it must capture the pitch of
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all instruments rather than that of a subset or single
instrument. One might argue that using a representa-
tion that contains more information than is necessary
to solve a task can make the subsequent steps of the so-
lution more difficult, however the literature shows that
this is not necessarily the case. For example, in melody
and bass extraction, methods that have used a mid-level
multipitch representation [11, 12, 13, 14] perform well,
suggesting that it is not imperative that a mid-level rep-
resentation be task-specific. Other melody extraction
methods create representations designed to extract the
pitch content of the melody and to ignore content that
is likely not part of the melody [1, 2, 15, 16, 17]. These
“melody-oriented” representations have the advantage
that the task of selecting the final melody is simplified.
However, they can also suffer from having low recall,
de-emphasizing some melodic content along with un-
desired content [18, 19, 20, 21, 22], which imposes
an artificial upper bound on performance. Addition-
ally, melody-oriented representations are not useful for
other tasks, such as multiple- f0 or bass tracking, neces-
sitating separate lines of research. Since many Music
Informatics tasks suffer from data scarcity, a mid-level
representation that works for multiple tasks (i.e., a com-
mon “front-end”) would be highly beneficial, allowing
whatever training data is available to be fully exploited
for training the task-specific part of each system (the
“back-end”).

Given a common multipitch representation, multiple- f0,
melody, bass, and vocal f0 tracking can be formulated
as nearly identical tasks: Given a set of candidates,
identify the relevant subset of candidates. This formu-
lation is easily extended to different sub-tasks, such as
applying different definitions of melody [8] or select-
ing the pitch of a specific type of source (e.g. female
vocals).

Just as phonemes are the building blocks of speech,
pitch contours—continuous trajectories of fundamen-
tal frequency values over time, whose length may
vary from a single note in the shortest case to a short
phrase in the longest [1, 22]—are the building blocks
of pitched musical audio. They are compact and seman-
tically meaningful units of sound organization that are
well aligned with human perception of pitch in the audi-
tory streaming literature [4], and can robustly serve as
mid-level representations for pitch estimation and char-
acterization tasks such as melody extraction. Unlike
piano-roll style “notes”, contours carry a rich set of in-
formation about the character of a pitched sound since

Fig. 2: Examples of six contours for an excerpt of female
singing, each a different color. Salience s(t) (not
pictured) would be in the z-axis.

they explicitly encode frequency deviations, shapes
such as bends, vibrato, and melisma are captured, as
well as the amplitude envelope.

More formally, a contour is a time series c(t) =
( f (t),s(t)) defined along a discrete, finite time interval
{t0, t1, ..., tn}, where f (t) is the fundamental frequency
of the contour over time, and s(t) is a representation of
the “salience” (or loudness, dominance) of the contour
over time. Note that a given contour is only defined
over the time interval [t0, tn]. To enforce the concept
of continuity over time and pitch, contours are defined
to have a minimum length of τ ms and a maximum
frequency change of δ cents per ms. These values can
be varied depending on the task/application. Instances
of f (t) for six contours are illustrated in Figure 2.

The pitch content in musical audio can be represented
as a set of contours, as we have seen in Figure 1, and
sets of contours can be used as a mid-level representa-
tion for various pitch estimation tasks in Music Infor-
matics.

3 How are Contours Estimated?

To date, a number of tasks have relied explicitly
on the use of contours, or “ f0 groups,” including
melody estimation [1, 2, 12, 17, 19, 21, 23], bass track-
ing [2, 7, 14, 24], singing or playing-style similarity
and classification [25, 26, 27], and emotion classifica-
tion [28].

One way contours are extracted is by first estimating a
“pitch salience function”—a time-frequency representa-
tion that estimates the dominance or likelihood of the
pitches present in the signal. The audio or spectral trans-
form can optionally be first pre-processed to emphasize
pitched content using harmonic-percussive source sep-
aration [29], spectral whitening [30, 3], a bandpass
filter [2] or an equal loudness filter [18]. Salience
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functions have been computed using harmonic sum-
mation across frequency [2, 3, 18, 30, 31], source-filter
modeling [15, 21], a combined source-filter and har-
monic summation model [17, 20], sinusoid-noise mod-
eling [32], non-negative matrix factorization [33, 34]
or through learned models [29, 35, 36, 37]. Contours
are most often extracted from a pitch salience function
by greedy peak streaming [17, 18, 23], where contours
are created by tracing trajectories using a set of rules
to enforce continuity over time, pitch and amplitude.
Another approach to contour tracking is a time-domain
approach [22] based on a harmonic locked loop (HLL),
which is a frequency-locked-loop modified to jointly
track harmonics.

To gain an understanding of how much of the pitched
content of a music recording these methods cover, we
compared the contours extracted by these methods
to the set of corresponding manual pitch annotations
(the “reference”) and computed the fraction of refer-
ences pitches that are covered by the extracted con-
tours, for three datasets: Bach10 [31] (multiple- f0),
MedleyDB [8] (melody), and Orchset [20] (melody).
The challenge of maximizing coverage (contour recall)
while maintaining a high enough precision to make the
representation useful (a trivial solution for maximizing
recall would be to mark every possible pitch as active
all the time, which is of course useless) remains open.
The results are shown in Table 1.

We see that even on Bach10, a relatively simple
multiple- f0 dataset, the best method does not yet reach
100% contour coverage. MedleyDB contains more
complicated polyphonic mixtures, but in this scenario
the algorithms were only evaluated on their coverage of
the main melody line. We see that the best method only
covers 70% of the main melody, and on Orchset only
58% of the main melody is covered by the extracted
contours. This lack of full pitch contour coverage high-
lights an important shortcoming in pitch estimation
tasks that is often overlooked, because systems are be-
ing evaluated based on their final output only, without
examining the mid-level pitch representations. It also
highlights the need for continued research in contour
estimation, where there is still substantial room for
improvement.

4 What Can Contours Represent?

Given an estimated contour, there are a number of se-
mantically meaningful features that can be extracted

Method Bach10 MedleyDB Orchset
Bosch [17] - 0.62 0.58

Salamon [18] - 0.64 0.45
HLL [22] 0.75 0.70 -
Duan [31] 0.73 - -

Benetos [33] 0.90 - -

Table 1: Average coverage of different contour tracking
methods on three datasets. MedleyDB scores are
computed for melody type 2 [8].

from it, such as basic statistics and polynomial mod-
els of the pitch and salience (mean, standard devia-
tion, range), duration information, and template match-
ing [38, 26, 28]. Descriptors about the vibrato can
also be estimated, such as the vibrato rate, amplitude,
and “coverage” (the percentage of a contour with vi-
brato) [1, 26]. Feature learning on contours is yet to be
explored, with all previous work using hand-designed
features and features from the time-series analysis liter-
ature.

To evaluate the usefulness of contours as a represen-
tation in a way which is as independent as possible
from the quality of contour estimation from polyphonic
music, we make use of a multitrack dataset. In this way,
contours can be estimated more cleanly from the iso-
lated monophonic recording of each instrument. The
data used in the subsequent experiments was drawn
from the MedleyDB multitrack dataset (first and sec-
ond release) [8, 39] and the Bach10 dataset.

For each song in the corpus that was recorded in an iso-
lated environment, we started by estimating the funda-
mental frequency curve for each isolated stem (track) of
a monophonic instrument2 using the pYIN pitch track-
ing algorithm [40]. We then filtered the fundamental
frequency time-series using instrument activation con-
fidence values (see [8]), such that if the confidence was
below 0.5, any estimated pitch content was removed3.
Contours were created from the filtered fundamental
frequency curves by segmenting the curve into contigu-
ously active regions. Regions were further segmented
if the change in pitch was greater than δ = 13.8 cents
per ms (80 cents per 5.8 ms hop), and contours shorter
than τ = 25 ms were removed 4. Pitch salience is esti-
mated as the weighted sum of the spectral energy at the

2Polyphonic instruments such as piano were ignored.
3The parameters were optimized to maximize the filtered pYIN

performance against human annotations.
4The values of τ and δ were empirically determined based on

initial experiments.
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Feature Q1 Q2 (Median) Q3
Pitch Mean (Hz) 82.2 176.9 296.2

Pitch Slope (cents / s) -180.2 -3.4 160.8
Pitch Std (cents) 8.7 20.6 45.7

Pitch Range (cents) 37.5 88.4 175.9
Duration (s) 0.13 0.26 0.52

Table 2: Quartile boundaries for a subset of the contour fea-
tures across the dataset.

first 8 harmonics of the contour f0, computed from the
song’s mix. The resulting dataset contained 109,294
contours across 28 instrument classes estimated from
529 isolated stems within 221 different songs. Features
were computed for each contour as in [26]. This feature
set includes polynomial fit coefficients, residuals, and
basic statistics (range and standard deviation) for both
frequency and salience, as well as measures of vibrato.

We measured the accuracy of our resulting pitch con-
tours by comparing them against the 96 human-labeled
annotations in MedleyDB (original release), and found
they had a raw pitch accuracy 5 of 80% with an overall
accuracy 6 of 79%. Most of the mistakes made by the
pitch tracker were neither octave nor voicing mistakes,
indicating that most of the errors are noise in the esti-
mation. While these contours are not perfect estimates
of the true pitch, we will see that they are discriminable
nonetheless.

4.1 Are Contours Organized in Feature Space?

Given these cleanly computed contours and their fea-
tures, we first explore how different classes of contours
are organized in feature space. Table 2 shows the quar-
tile boundaries for a subset of the features across the
set of contours. We randomly select approximately
6700 pitch contours from the 10 most common instru-
ments in our dataset (including vocals), and project
them into a 2-dimensional space using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [41], a tech-
nique designed for visualizing and revealing structure
in high-dimensional data. In our case, the original di-
mensions are given by the relatively small set of contour
features described previously. The result is displayed
in Figure 3, where in each subplot we highlight a dif-
ferent subset of instruments: (a) string (violin, viola
and cello), (b) bass (double and electric), (c) vocals

5The percentage of voiced frames correct within a quarter tone.
6The percentage of correct voiced and unvoiced frames.

(male and female, including rap) and (d) wind (saxo-
phone and trumpet). We see that even with a relatively
small set of features derived directly from the pitch
contours, different instrument classes tend to cluster
in different regions of the embedding. This suggests
that pitch-contour-based features are semantically rich
and discriminative despite their low dimensionality.
This makes them an attractive mid-level representa-
tion, which could potentially be used to discriminate
between instruments or relevant groups of instruments
such as the vocals or the bass line. In the following
section we explore this further through a series of su-
pervised learning experiments.

4.2 Can we Train a Model to Discriminate
Between Contours?

In order to directly quantify the discriminability of con-
tours, we consider the following binary classification
tasks: (1) vocal / non-vocal, (2) bass / non-bass, (3)
melody / non-melody, and (4) male singer / female
singer (on the subset of vocal contours). For each task,
a binary 100-tree random-forest classifier is trained on
the features described earlier in Section 4. The fea-
tures were standardized to zero mean and unit variance,
and the parameters of the classifiers were fit using a
randomized hyper-parameter search on the training set.
The training and test set were created using an artist-
conditional random split on the songs in the dataset
(see [19]), treating all tracks from Bach10 as a single
artist. Each experiment was run on five different ran-
dom splits, and the class-weighted accuracy is shown
in Figure 4, top.

The bass classification tasks performs best at 94%
average accuracy, followed by melody and vocals.
While there is still room for improvement, these re-
sults demonstrate that even with a basic feature set, if
the contour estimates are relatively clean, tasks such as
melody and bass line selection can be performed at the
contour level. In analyzing the importance of each of
the features, we found that the classifier relied heavily
on “average pitch”. To better understand the influence
of this feature, we trained a second set of models on the
same feature set, removing average pitch. The results
are shown in Figure 4, bottom. For bass, we see that the
accuracy drops by≈20% without the use of the average
pitch feature, and similarly the melody and vocal clas-
sification accuracies drop by ≈15%, indicating that the
other features have enough discriminative information
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(a) (b) (c) (d)

string bass vocals wind

Fig. 3: t-SNE projection of 6700 contours from 10 instruments grouped into 4 categories: (a) string (violin, viola & cello), (b)
bass (double & electric), (c) vocals (male & female) and (d) wind (saxophone & trumpet).
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Fig. 4: Class-weighted classification accuracy for each task
when training with all features (top) and without av-
erage pitch (bottom). Bars indicate the standard devi-
ation across experiments.

to classify the majority of contours. Interestingly, we
see that vocal gender is not at all influenced by remov-
ing average pitch, likely due to the often overlapping
vocal range of male and female singers in our dataset.

4.3 Does this approach also work for
polyphonic mixes?

We have shown that even with a basic feature set, con-
tours belonging to different classes can be discrimi-
nated when the contours are cleanly estimated from
isolated signals. This raises the question of how well
contours estimated from polyphonic audio can be dis-
criminated.

In Melodia [1], contours are estimated using the peak-
streaming approach described in Section 3, and are

discriminated based on a set of heuristic rules about
their features. Using the same set of contours computed
by the Melodia front end, we explored using a gener-
ative statistical model for distinguishing melody from
non-melody contours [38] and found that the perfor-
mance nearly matched the performance of Melodia on a
per-contour basis. We also tried using a discriminative
classifier and found that it outperformed the generative
model, correctly classifying 75% of contours vs. 72%
of contours [19]. We repeated the same experiment
using contours computed from an improved salience
function, evaluating on both the MedleyDB and Orch-
set datasets [17], and found that the improved salience
function resulted in more discriminative contour fea-
tures. Using supervised learning to train a model for
contour classification (compared to a fixed set of heuris-
tics) was especially useful in the case of orchestral mu-
sic, since rules from Melodia had been tailored to other
types of data. We performed a similar experiment to dis-
tinguish vocal from non-vocal contours in a database of
world folk music [26] using a discriminative classifier
and achieved a class-weighted per-contour accuracy of
74%.

We also used the Melodia-based contours to ex-
plore the usefulness of melodic contour features for
singing/melodic style classification [25]. In Figure 5
we reproduce a plot from this study that illustrates the
potential discriminative power of contour features: us-
ing only two vibrato-related features, we see that the
five melodic styles considered in the study are already
fairly separable.
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This gives us a total of 51 features. Initial experiments revealed
that some features resulted in better classification if they were com-
puted using only the longer contours in the melody. This is probably
because long contours are less likely to be an error of the melody
extraction algorithm, and also there is a greater chance to detect vi-
brato features in longer contours. For this reason we computed for
each feature (except for the interval features) a second value com-
puted using only the top third of the melody contours when ordered
by duration. This gives us a total of 98 features for the next stage.

2.3. Classification

To classify the excerpts we compare several classification algorithms
from the Weka data mining software [13]. We start by performing
attribute selection using the CfsSubsetEval attribute evaluator and
BestFirst search method [14] with a 10-fold cross validation, only
keeping features that were used in all folds. Each attribute is nor-
malised feature-wise between 0 and 1. For each classification algo-
rithm we use a 10-fold cross validation and repeat the experiment 10
times, reporting the average accuracy. The algorithms compared are
Support Vector Machines (SMO; radial basis function kernel), Ran-
dom Forest (RF), K-Nearest Neighbours (K*) and Bayesian Network
(BNet).

3. EVALUATION

3.1. Data-sets

For evaluation we constructed a data-set of five musical genres in
which the melody plays an important role: opera, pop, flamenco,
vocal jazz and instrumental jazz (where the melody is played by a
saxophone or trumpet rather than sung). For initial experiments the
data-set consisted of fifty 30-second excerpts per genre (250 excerpts
in total). The set was later expanded to include 100 excerpts per
genre (500 excerpts in total). To cover variations within a genre the
the excerpts for each genre were selected from a wide set of artists.
All excerpts were taken from a section of the song where the melodic
line is clearly present.

As a final experiment we evaluated our method on the GTZAN
[1] collection, consisting of 10 genres with one hundred 30-second
excerpts per genre (1000 excerpts in total). Note that in this col-
lection some excerpts might not have a melody at all, and for some
genres (e.g. metal) the melody extraction may not perform very well.
Still, we wanted to see what could be achieved for this collection
without any modification to the method or excerpts.

3.2. Baseline and combined feature sets

To compare our results we computed a baseline set of low-level tim-
bral features which are commonly used in genre classification. For
each excerpt we computed the first 20 Mel-frequency cepstral coef-
ficients (MFCCs) as in [15], using a 23ms window size with 50%
overlap, taking 40 mel-frequency bands up to 16kHz. We compute
the mean and variance of each coefficient, resulting in a total of 40
descriptors. We also wanted to see whether results could be im-
proved by combining low-level and high-level information. To do
this we created a third feature set which combines our melodic fea-
tures with the MFCC features, giving a total of 138 descriptors.

3.3. Results

We start by presenting the results for the initial 250 excerpt data-
set. A total of 10 attributes were selected out of the initial 98 (a

* indicates the feature was computed from long contours only):
rp:mean, µp:mean, vr:mean*, vr:skewness*, ve:mean*, vc:mean*,
vc:stddev*, ⇣9*, ⇣10*, ⇣14*. We see that most descriptors are com-
puted from the longer contours of the melody. We also note a strong
presence of vibrato related features. In Figure 3 we present the
classification results comparing the melodic, MFCC and combined
feature sets. The number of features selected for each set is indicated
in brackets.
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Fig. 3. Classification results for the initial 250 excerpt data-set.

We see that with all classifiers we obtain a classification accu-
racy of over 90% using the melodic features. In all cases the melodic
feature set outperforms the baseline approach. Next, we note that for
most classifiers we can increase the classification accuracy by com-
bining the MFCC features with our high-level melodic features.

To see whether any descriptors were especially discriminative
we also classified the data using a decision tree. It turned out that two
important features are the mean vibrato coverage and mean vibrato
rate. In Figure 4 we see that the genres can be fairly well separated
using just these two descriptors. Furthermore, both descriptors are
musically meaningful (the former expressing the degree to which
vibrato is applied and the latter the average rate of the vibrato).
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Fig. 4. Mean vibrato coverage vs mean vibrato rate.

Next we examine the results for the extended data-set (500 ex-
cerpts), provided in Figure 5. Note that this time only 7 descriptors
were selected for the melodic feature set.
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Fig. 5. Classification results for the extended 500 excerpt data-set.

We see that for all classifiers the melodic feature set maintains
classification accuracies above 90%. We also note that for RF and

Fig. 5: Singing style as a function of mean vibrato rate and
coverage. Reproduced from [25] with permission
from the authors.

5 Future Directions

We have seen that contour coverage and estimation
quality is a major bottleneck in pitch-estimation tasks,
with none of the approaches presented to date reaching
100% contour recall. Given the promise that deep learn-
ing approaches have shown for melody extraction and
other tasks in Music Informatics, we see an opportunity
in this domain. Deep learning could be used to learn
a time-frequency representation akin to a multipitch
salience function that would facilitate better contour
tracking. Since this multipitch representation can be
shared by multiple tasks, there is a clear opportunity
for applying multitask learning to jointly learn a multi-
pitch representation. Additionally, incorporating phase
information into contour extraction methods could help
untangle overlapping or interfering partials.

We applied a relatively simple feature set in our ex-
periments, and it is almost certainly undercomplete.
This could be addressed by feature learning techniques,
as well as by adding more information to a contour,
such as a representation of the amplitudes of harmonics
over time as a proxy for timbre. Contour classifiers to
date use less information than the heuristic methods—
namely they use little information about neighboring
or co-occurring contours. These relationships could
potentially be accounted for in a decoding stage, much
like a language model in speech recognition. Addition-
ally, including timbre information (e.g. the amplitude
of each harmonic over time), would likely improve
contour discrimination tasks such as vocal gender clas-
sification.

To facilitate research on contour-driven Music Infor-
matics, as well as the reproducibility of the experiments
presented in this study, we have created an open source

library called motif 7 built around the factorization
paradigm we have proposed in this paper. The library
contains implementations of several contour extraction
and contour classification methods that can be applied
to any pitch estimation task. The library is built to
make it easy to add new methods and experiment with
combinations, and we encourage contributions.
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